

EU Green Week Partner Event

INTEGRATED SEWAGE SLUDGE MANAGEMENT AND ENERGY OPTIMIZATION: A ROMANIAN OPERATOR'S PERSPECTIVE

WASTEWATER AS A RESOURCE: REGIONAL WORKSHOP ON SEWAGE SLUDGE MANAGEMENT AND ENERGY EFFICIENCY

AQUATIM SA – REGIONAL WATER & WASTEWATER SYSTEMS

OPERATOR IN ROMANIA

WWTP TIMISOARA - SPECIFICATIONS:

- Capacity = 440,000 LE
- Average daily flow rate= 2,400 l/s;
- Maximum daily flow = 3,000 l/s;
- Annual sludge production = 38,000 m³/year;
- BOD5 = 22,000 kg/day;
- Suspended solids = 28,000 kg/day;
- Nitrogen = 5,400 kg/day;
- Phosphates = 1,600 kg/day.

KEY ELEMENTS OF THE LEGISLATIVE FRAMEWORK IN ROMANIA

European Union Directives (Transposed into Romanian Law)

- Council Directive 86/278/EEC
- Urban Wastewater Treatment Directive (91/271/EEC)

Romanian National Legislation

- Law Government Decision (HG) No. 344/2004
- No. 211/2011 on Waste Regime (updated)
- Emergency Ordinance No. 195/2005 on Environmental Protection
- Normative Acts on Fertilizers and Soil Protection

TOTAL SLUDGE FROM WWTPs PRODUCED IN ROMANIA:

230,600 t dry matter (2022)

USES OF SEWAGE SLUDGE IN ROMANIA:

SEWAGE SLUDGE PRODUCTION WWTP TIMISOARA [T/Y]

Reduced quantity due to change of technology

SLUDGE MANAGEMENT - WWTP TIMIŞOARA

REUSE IN AGRICULTURE

Romania promotes the use of sewage sludge as fertilizer in agriculture, under strict conditions:

• Sludge must be treated and stabilized (e.g., by anaerobic digestion).

Monitoring of soil quality is mandatory before and after application.

SLUDGE STORAGE

- Time limited storage on authorized and controlled sites e.g. specially designed platforms
- Landfilled if DS ≥ 35%

SLUDGE THICKENING AND DEWATERING SOLUTIONS

SLUDGE THICKENING AND DEWATERING SOLUTIONS

APPLIED SOLUTIONS

Mechanical Thickening & Dewatering:

- ✓ Thickening tables replaced by centrifugal thickeners
- ✓ Belt filter presses replaced by centrifuge presses

Solar greenhouse drying:

- √ 10 greenhouses structured in 2 batteries (one of 4 and one of 6 greenhouses),
- \checkmark total surface of 10.000 m²
- √ low operating costs:
 - for the warm season (7-8 months/y) solar heating
 - for the cold season heating system = heat pumps, which transfer the heat from the effluent of the WWTP, by means of a thermal agent (water with antifreeze), to the underfloor heating network of the greenhouses.
 - Heating capacity of the system = 4 MW

THERMAL PROCESSING FOR SUSTAINABLE SEWAGE SLUDGE MANAGEMENT

SLUDGE DRYING AND ENERGY RECOVERY PLANT

Design data:

- quantity of sludge produced in the operating area: 33,182 t (28%SU)/year
- average DS content: 28%
- plant operating time: 8.000 h/year
- drying unit designed for 4,148 t/h (28%SU)
- TWO plant designed for 1,451 t/h (80%SU)

ADOPTED TECHNOLOGY:

THERMAL PROCESSING FOR SUSTAINABLE SEWAGE SLUDGE MANAGEMENT

THE TECHNOLOGICAL FLOW OF THE SLUDGE DRYING AND ENERGY RECOVERY PLANT CAN BE DIVIDED INTO 3 ZONES:

The entire process is controlled via an automation system. Operator intervention is only required for process priming and maintenance operations.

THE SLUDGE DRYING AND ENERGY RECOVERY PLANT - ZONE I.

Reception, drying and pelletizing

Sludge reception:

- 4 unloading tanks for sludge transportation means.
- storage tank 300 m³.

Sludge drying:

 mobile belt dryer having a capacity of 4,148 kg/h (28%SU).

Pelletizing: by extrusion.

SLUDGE DRYER

THE SLUDGE DRYING AND ENERGY RECOVERY PLANT - ZONE II.

Heat treatment and energy recovery

Thermal Waste Oxidation (TWO):

- a two-stage thermal treatment of sludge.
- in the primary cells the organic matter in the sludge is converted into fuel gas.
- in the secondary cells the produced gas is combusted.

Organic Rankine Cycle:

- the thermal energy recovered from the flue gases is transmitted to the ORC turbine for electricity generation (300 kWh);
- used in the drying process;
- used for heating the technological premises.

ORC TURBINE

THE SLUDGE DRYING AND ENERGY RECOVERY PLANT - ZONE III.

Treatment of air and water from the process

Air treatment:

- Reception area odors are treated by an Aernet biofilter. The bacterial biomass is resting on a mineral backfill.
- Moist air from the dryer, after condensation, is treated in two reduction towers (basic and acid).

Water treatment.

- The amount of water extracted from the dryer is approx. 2,700 l/h.
- The treatment process comprises:
 - Clariflocculation section;
 - Filtration and ultra-filtration section;
 - Membrane washing unit.

WET AIR TREATMENT UNIT

THANK YOU FOR YOUR ATTENTION!

Dr. Ing. Monica ISACU

Email: monica.isacu@aquatim.ro

Tel: +40 744 576277