

Numerical modeling of macroplastic transport in rivers

Gábor FLEIT Research fellow @ BME

Introduction

BUDAPEST UNIVERSITY
OF TECHNOLOGY AND ECONOMICS

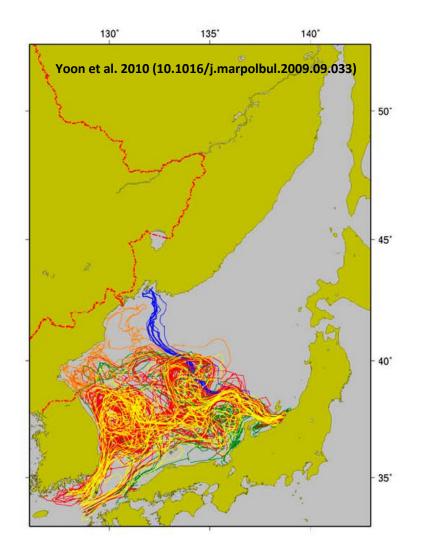
The problem of (macro)plastic pollution is well-known.

- Laboratory measurements help us understand the fine details
- Field measurements provides to the large-scale, real context
- The goal of **numerical modeling** is prediction
 - Here, only floating macroplastics
 - How are they transported in the river?
 - What processes are to be considered?
- The ultimate goal of the predictions
 - To predict potential litter hot-spots to support and optimize cleanups
 - To support the planning and implementation of interventions best place to install litter traps?

Introduction

BUDAPEST UNIVERSITY
OF TECHNOLOGY AND ECONOMICS

Numerical modeling efforts in the literature


 Most of the studies are focusing on ocean/coastal environments—that is where the problem culminates

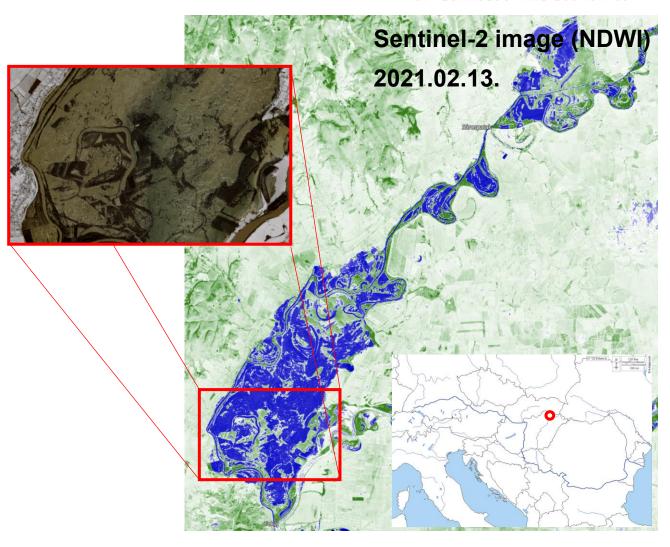
Why can't we simply use the same methods?

In rivers..

- Direct influence of wind is lower
- Higher flow velocities (and more intense turbulence)
- Curvature effects—secondary currents
- Local morphology plays a key role
- Confined space—beaching, trapping

• ...

Study site

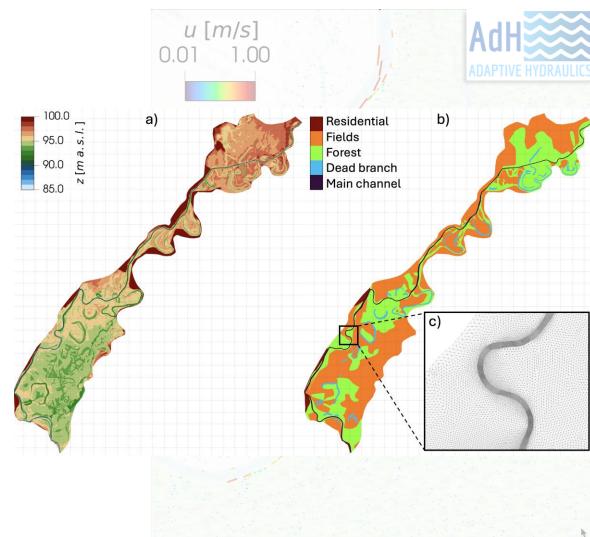

BUDAPEST UNIVERSITY
OF TECHNOLOGY AND ECONOMICS

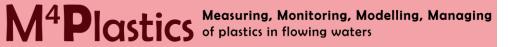
Bodrog river

- Length: 67 km (~60 km in Hungary)
- Discharge: $Q_{mean} = 115 \text{ m}^3/\text{s}$; $Q_{max} = 693 \text{ m}^3/\text{s}$
- Extensive vegetated floodplain

Key features

- Multiple floods per year (winter is typical)
- Backwater effect of the Tisza river
- The floodplain is often inundated
- Often combined with severe litter floods
- Complex floodplain
 - Forest patches
 - Submerged vegetation
 - Dead branches

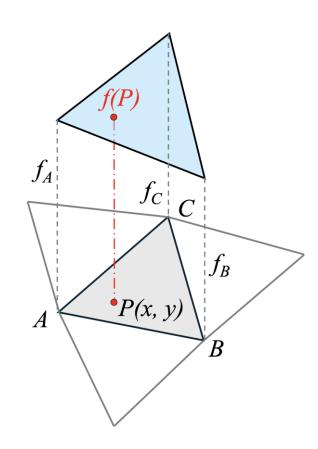



Hydrodynamic modeling

OF TECHNOLOGY AND ECONOMICS

Adaptive Hydraulics (AdH)

- Developed at USACE
- Two-dimensional, depth integrated approach (SWE)
- Finite element solver (transient)
- Curvature effects are considered (vortex transport method)
- Variable roughness, sediments, etc.
- Flexible triangular mesh
- In-house experience...

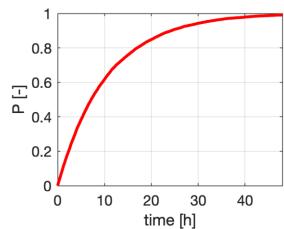


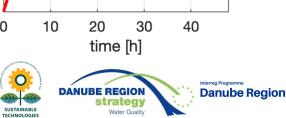
BUDAPEST UNIVERSITY
OF TECHNOLOGY AND ECONOMICS

Lagrangian particle transport model

- Offline coupling with the HD model
 - In-house code (python)—particle behavior is programmable—modular design
 - Testing and sensitivity analysis (enough to run HD once)
 - Works with basically any 2D model (input: mesh + transient HD solution)
- Turbulent dispersion—random-walk approach
 - Multiple models for D_h (Elder, Smagorinsky...)
- Efficient local particle search algorithm (key in large domains)

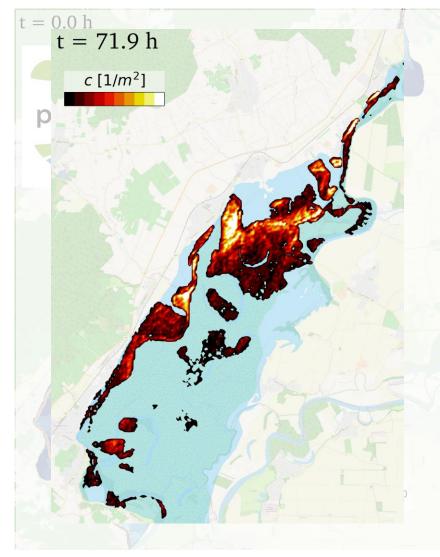
$$x(t + \Delta t) = x(t) + \left(u(x, y, t) + \frac{\partial D_{h, x}(x, y, t)}{\partial x}\right) \Delta t + \sqrt{2D_{h, x}(x, y, t) \Delta t} \cdot R_x$$

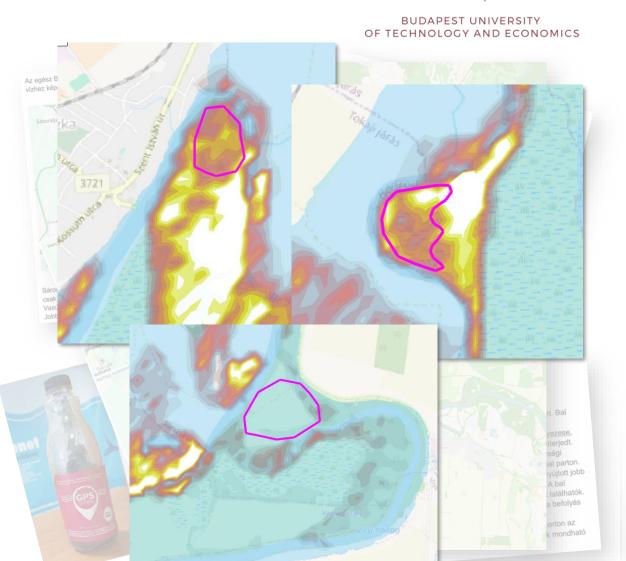

plasTrack


Specific mechanisms for floating macroplastic transport

- MPs are considered as virtual particles
- Velocity at the free surface ≠ depth-averaged (floating)
- Stranding—pickup (water level change)
- Trapping in vegetation (probability-based)

Output: concentration of trapped MPs—heatmaps




Verification

"All models are wrong, but some are useful"

/George Box/

How to make sure the particle model is useful?

- Verification data is key, but is far from straightforward in this case
- Field campaigns (cleanup)—qualitative data with details report → GIS
 - Comparison with litter heatmaps
- GPS bottles—detailed, valuable yet limited amount of information

BME BME

Synergies — The role of M4

BUDAPEST UNIVERSITY
OF TECHNOLOGY AND ECONOMICS

- Modeling efforts are crucial for predictions and management in particular
 - E.g.: litter traps implemented in the model ($P_{trapping}=1$) \rightarrow optimalization
- For good models, we need measurements for verification and development
 - Experimental data—underlying physics—what/how to consider?
 - Field data—actual verification data—what are we missing?
- On the field we usually got snapshots—uncertainty for modeling
 - What were the initial conditions?
 - Transient nature?
 - Potential solution: monitoring data is (ML-based MP detection and counting algorithms)

Collaborative efforts across disciplines are crucial!

Dipartimento di Ingegneria Civile e Ambientale

BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS

Thank you

Gábor FLEIT Research fellow @ BME

