

BUDAPEST UNIVERSITY
OF TECHNOLOGY AND ECONOMICS

Measuring and sampling microplastic from rivers

Flora POMAZI

Research fellow

pomazi.flora@emk.bme.hu

Department of Hydraulic and Water Resources Engineering, Faculty of Civil Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary

National Laboratory for Water Science and Water Security, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary

iNNOvative SED iment management in the Danube River Basin

The many ways of measuring and sampling microplastics in rivers - problem statement

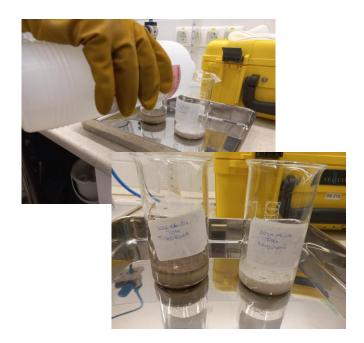
What to measure? i.e. fractions	What to sample? i.e. medium	Sampling tools?	Units?
microplastic particlesmicrofibres	 in natural water – close to surface/ riverbed or in the middle in wastewater in bottom sediment in aquatic species 	 net sampler pump sampler bucket sampler grab sampler core sampler 	 nr. of particles particle concentration mass mass concentration mass load

- as water engineers, we have the toolkit to sample both fractions in water and bottom sediment,
 and to measure microplastic particles in the laboratory
- but for analysing microfibres, we need chemistry

The many ways of measuring and sampling microplastics in rivers - problem statement

What to measure? i.e. fractions	What to sample? i.e. medium	Sampling tools?	Units?
 microplastic particles microfibres 	 in natural water – close to surface/ riverbed or in the middle in wastewater in bottom sediment in aquatic species 	 net sampler pump sampler bucket sampler grab sampler core sampler 	 nr. of particles particle concentration mass mass concentration mass load

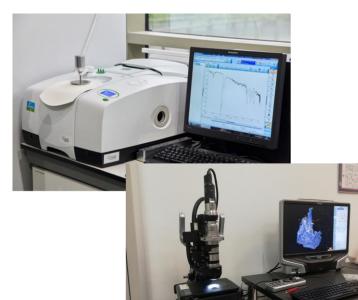
- as water engineers, we have the toolkit to sample both fractions in water and bottom sediment,
 and to measure microplastic particles in the laboratory
- but for analysing microfibres, we need chemistry



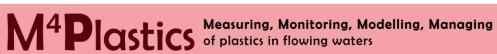
Laboratory analysis

BME BME

Microplastic identification and dimensional analysis

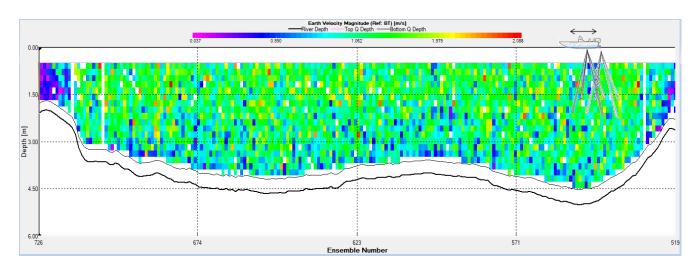


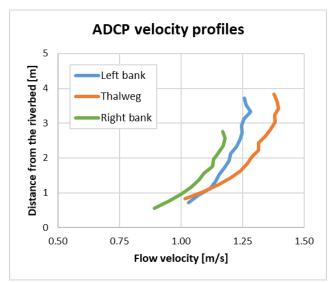
Chemical treatment


H₂O₂ is cheap but: health risks + not environmentally friendly

Sorting by hand highly time-consuming how to tell what is plastic?

+ weighing and counting MPs
overly time-consuming
degradation reduces the reliability of

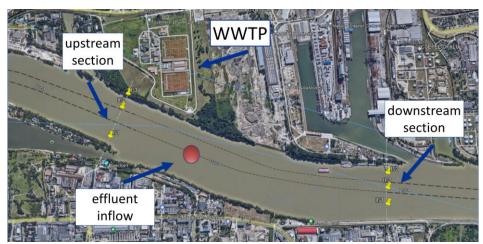

Spatial exploration

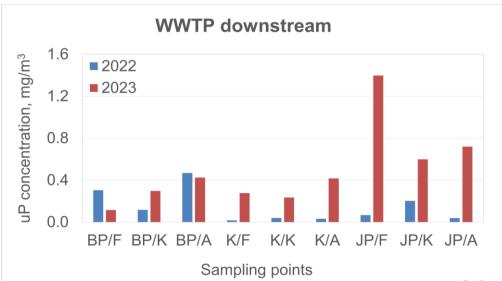

Small scale: Detailed field campaigns – patterns of microplastic transport

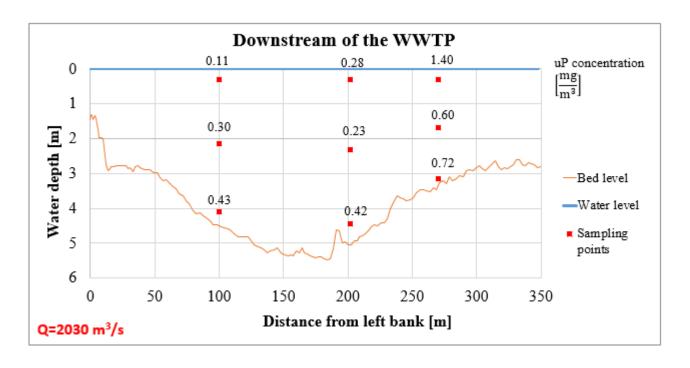
- first step: hydromorphological mapping
 where to expect pollutants

Challenges:

- representativeness
- adequate vessel
- sample extraction
- time requirements
- ship traffic






Results

BME BME

Small scale: Detailed field campaigns

Annual average microplastic load:

BP: left bank K: middle

JP: right bank vertical;

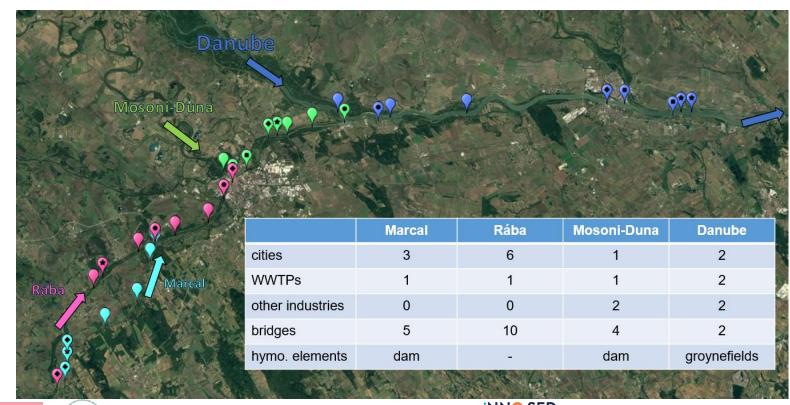
JP: right bank vertica

F: top K: middle

A: bottom sampling point

~0.50 mg/m³ -- ~31 t/yr

Spatial exploration



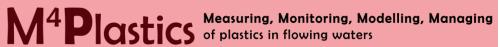
Large scale: River system-wide investigation

- natural and anthropogenic sources
- beforehand: assessment of possible impacts on microplastic transport
- careful selection of sampling sites

Challenges:

- time requirements
- representativeness
- scales
- accessibility

Snapshots

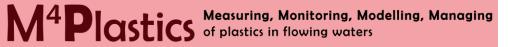

Results

Large scale: River system-wide investigation

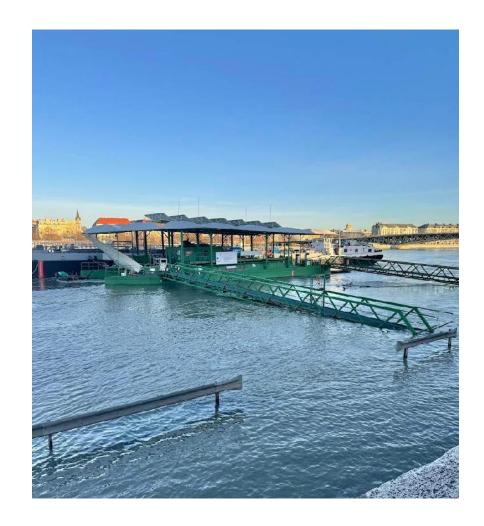
Temporal analysis

Examine transport dynamics and preparing statistics

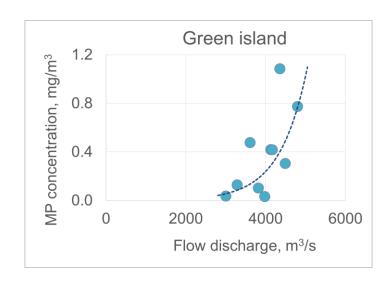
- near-bank fixed-point sampling
- during floods → large range covered within a short period of time
- high sampling frequency

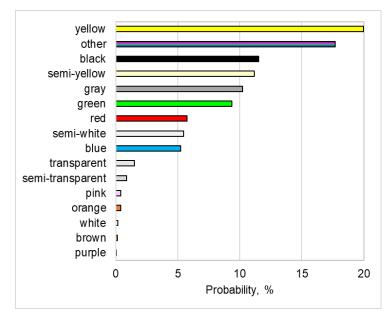

Challenges:

- location
- debris
- mesh size
- personal safety and health!

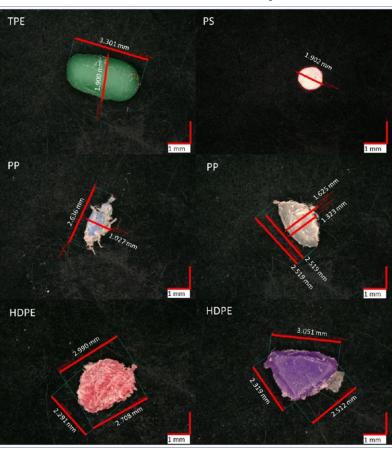


Challenges of monitoring



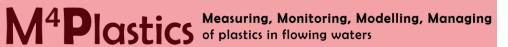

Results

Examine transport dynamicspreparing statistics


Rating curve

Other 20% PE 25% PP 12% Add LDPE PP 12% P

Dimensional analysis


Conclusion and outlook

pomazi.flora@emk.bme.hu

Take-home messages

- Know your microplastic: the meaningful results come by following the suitable methodology for the microplastic pollution in question
- Strive for harmonised data collection: always include hydrological data and provide comparable units
- Think in systems:
 explore the potential sources of microplastic pollution both natural and anthropogenic
- Aim for the full picture: both spatial and temporal analysis of the riverine microplastic pollution is needed in order to understand the complex phenomena
- Question your results: it is hard to account for representativeness, but always have a closer look at possible biases

