Water Quality & Energy Consumption Energy Audit of WWTP in Hungary – Baden-Württemberg (Germany) and Hungarian collaboration Preliminary Results

Mr. Janos Tamas, Professor and Head of Water and Environmental Management Institute, University of Debrecen

Background of the project

- Hungary is a priority country in the Danube-basin for Baden-Württemberg- DRS Strategy
- Baden-Württemberg shares the latest knowledge and know how in the field of energy-efficiency in WWTPs
- The project is a good tool to explore further projects in the future,
- The long-time cooperation-potential is high in the topic

Treated Waste Water disposal (2010-2012)

12 (31%)

10(33%)

259 (39%)

47

33

711

6(13%)

2(6%)

176(%)

Dráva

Total

Balaton

39

30

660

The overall fix costs in public water utilitiy sector in Hungary is 88 %, from that 90 % is the electric energy cost. (Source: KPMG, April, 2015)

Operative Program for financing Environmental and Energy projects 2007-2013 in Hungary

- WASTE MANAGEMENT IMPROVEMENT, 70 Mrd HUF
- DRINKING WATER QUALITY IMPROVEMENT, 50 Mrd HUF
- SEWER NETWORK IMPROVEMENT, TREATMENT PLANT NEW & RECONSTRUCTION, 184 Mrd HUF

Joint Research Project on Energy Efficiency of Municipal WWTPs in Hungary

(Gemeinsames Forschungsvorhaben zur Energieeffizienz kommunaler Kläranlagen in Ungarn)

• Project Idea and Framework

- Study on energy efficiency of municipal WWTPs for the state of Baden-Württemberg
- Status quo of the energy situation of WWTPs (data collection, analyses and processing)
 - Potential for energy saving
 - Potential for energy production
 - Clean water with lower energy consumption
 - Total project duration: 6 months (+ 2 months for written report)

Leitfaden Energieeffizienz auf Kläranlagen

- Evaluation if the approach and methodology applied in the Baden-Württenberg Sudy can be used for
 - Analysing the energetic situation on municipal WWTPs in Hungary
 - Showing potentials for energy saving and generation on WWTPs in Hungary
- But
 - Presumably, due to different boundary conditions (e.g. equipment for metering of electric power consumption) and the used methods cannot be applied directly
 - Modification of methods for assessing energy efficiency of WWTPs under different wastewater management, input structures and in a different economical environment is also important task
- Goal: Finding an appropriate approach and exemplarily showing it work

Project partners

- University of Stuttgart Germany Project leader
- Institute for Sanitary Engineering, Water Quality and Solid Waste Management (ISWA)
- University of Debrecen
- Ministry of Interior, Hungary Coordinator
- Baden- Württenberg Government Coordinator
- Debreceni Vízmű Ltd.
- Nyírségvíz Ltd.
- Tiszamenti Regionális Vízmű Ltd. (Karcag)

Prof. Carsten Meyer

Head Department of Wastewater Technology http://www.iswa.uni-stuttgart.de

Power consumption of WWTPs are significantly diverse – How can be optimize?

 \Rightarrow Specific electric power consumption of WWTPs depending on size (p.e.) (n=62)

⇒ Specific electric power consumption of single process steps of WWTPs

⇒ Estimation of electric power saving potential of WWTPs by implementation of of energy efficiency measures (e.g. efficient pumps, efficient diffusers/blowers, aeration control)

- S = Ad-hoc measures with no/minor CAPEX
- K = Short-term measures within 2-5 yrs and with cost-effective CAPEX
- A = Long-term measures dependent on upcoming refurbishments or extensions

⇒ Estimation of electric power generation potential of WWTPs by e.g. switching to separate anerobic sludge treatment, refitting CHP etc.

Nyíregyháza' WWTP

- Sewage collection from 67 towns and villages – service for *households, public institutions, industrial parties*
- Separated sewer network, length: 1995
 km
- **Gravity and pressure** sewer sections following the relief
- Service for 270,000 people
- 4 townships are out of the sewer network

 sewage transported to the WWTP by the company

Nyíregyháza' WWTP

•33 treatment plants

•Capacity altogether: 64,625 m³/d (used almost in 100%)

•2 major WWTPs in Nyíregyháza – additional technologies for by-product utilization

QUALITY MANAGEMENT – Energy Audit Nyíregyháza ISO 50001

Applied seven major components to ISO 50001:[13]

- 1.: General Requirements:
- 2.: Management Responsibility
- 3.: Energy Policy
- 4.: Energy Action Plan
- 5.: Implementation and Operation
- 6.: Performance Audits
- 7.: Management Review

Dewatered sludge is transported to the major WWTPs

Biogas production -> electricity

Residue -> **composting** -> **licenced** product

Debrecen WWTP

Assessment of the catchment area (design capacity (p.e.), 675.000 p.e. current treatment (p.e.), 233.333 p.e.

Influent data, effluent data of biology and secondary clarifier Q dry (average) 37.500 m3/d Q rain (maximum) 65.000 m3/d

Legal monitoring values

pH=6,5-9; COD 75 mg/L; BOD 25 mg/L; Ptotal 1 mg/L; SS: 35 mg/L;

Ninorg 20 mg/L; Ntotal(V.1.-XI.15.): 10 mg/L; Ntotal (XI.16.-IV.30.): 20 mg/L; NH4-N: 5 mg/L.

Task list

- Data collection
 - technical parameters
 - water quality monitoring data sources
 - energy consumption
- Data base structuring
- Energy audit
- Evaluation and suggestions

3 AHX516	Vác - Szennyvízelvezetési Agglomeráció	2225 aktiv	HU-91271CQ-2016 HU-WWTP-AIB508	Vac - Szennyviztisztito Telep	47,7915 19,1465
4 AHY847	Vácszentlászló - Szennyvízelvezetési Agglomeráció	2225 aktiv	HU-91271CQ-2016 HU-WWTP-AIA204	Vacszentlaszlo - Szennyviztisztito Telep	47,5587 19,5476
5 AIQ388	Vágáshuta - Szennyvízelvezetési Agglomeráció	2225 aktív	HU-91271CQ-2016 HU-WWTP-AIQ420	Vagashuta - Szennyviztisztito Telep	48,424 21,536
6 AHX519	Vaja - Szennyvízelvezetési Agglomeráció	2225 aktív	HU-91271CQ-2016 HU-WWTP-AIB511	Vaja - Szennyviztisztito Telep	47,9932 22,1752
7 AOT160	Valkonya - Szennyvízelvezetési Agglomeráció	2225 aktiv	HU-91271CQ-2016 HU-WWTP-AOT159	Valkonya - Szennyviztisztito Telep	46,4994 16,8092
8 AHX522	Vállus - Szennyvízelvezetési Agglomeráció	2225 aktív	HU-91271CQ-2016 HU-WWTP-AIC134	Vallus - Szennyviztisztito Telep	46,8448 17,2996
9 AHX525	Vámospércs - Szennyvízelvezetési Agglomeráció	2225 aktív	HU-91271CQ-2016 HU-WWTP-AIC135	Vamospercs - Szennyviztisztito Telep	47,514 21,8846
0 AHX532	Várpalota - Szennyvízelvezetési Agglomeráció	2225 aktiv	HU-91271CQ-2016 HU-WWTP-AIC136	Varpalota - Szennyviztisztito Telep	47,1983 18,1588
1 ANR755	Varsád - Szennyvízelvezetési Agglomeráció	2225 aktív	HU-91271CQ-2016 HU-WWTP-ANR756	Varsad - Szennyviztisztito Telep	46,5217 18,5231
2 AHX533	Várvölgy - Szennyvízelvezetési Agglomeráció	2225 aktív	HU-91271CQ-2016 HU-WWTP-AIC137	Varvolgy - Szennyviztisztito Telep	46,8774 17,2954
3 AHX535	Vásárosnamény - (Gergelyiugornya nélkül) - Szennyvízelvezetési Agglomeráció	2225 aktiv	HU-91271CQ-2016 HU-WWTP-AIA222	Vasarosnameny - (Gergelyiugornya nelkul) - Szennyviztisztito Telep	48,138 22,3065
4 AHY866	Vásárosnamény - Gergelyiugornya - Szennyvízelvezetési Agglomeráció	2225 aktív	HU-91271CQ-2016 HU-WWTP-AIA223	Vasarosnameny - Gergelyiugornya - Szennyviztisztito Telep	48,1513 22,3758
5 AHX540	Vasvár - Szennyvízelvezetési Agglomeráció	2225 aktív	HU-91271CQ-2016 HU-WWTP-AIB532	Vasvar - Szennyviztisztito Telep	47,0525 16,792
6 AHX547	Veresegyház - Szennyvízelvezetési Agglomeráció	2225 aktiv	HU-91271CQ-2016 HU-WWTP-AIC141	Veresegyhaz - Szennyviztisztito Telep	47,65 19,3053
7 AHX548	Verpelét - Szennyvízelvezetési Agglomeráció	2225 aktív	HU-91271CQ-2016 HU-WWTP-AIB540	Verpelet - Szennyviztisztito Telep	47,8362 20,2213
8 AHX549	Verseg - Szennyvízelvezetési Agglomeráció	2225 aktív	HU-91271CQ-2016 HU-WWTP-AIB541	Verseg - Szennyviztisztíto Telep	47,7156 19,5693
9 AHX550	Vértesacsa - Szennyvízelvezetési Agglomeráció	2225 aktiv	HU-91271CQ-2016 HU-WWTP-AIC144	Vertesacsa - Szennyviztisztito Telep	47,3687 18,5723
0 AHX551	Vése - Szennyvízelvezetési Agglomeráció	2225 aktív	HU-91271CQ-2016 HU-WWTP-AIA238	Vese - Szennyviztisztito Telep	46,2937 17,2757
1 AHX552	Veszprém - Szennyvízelvezetési Agglomeráció	2225 aktív	HU-91271CQ-2016 HU-WWTP-AIA239	Veszprem - Szennyviztisztito Telep	47,1219 17,9111
2 AHY883	Veszprémvarsány - Szennyvízelvezetési Agglomeráció	2225 aktiv	HU-91271CQ-2016 HU-WWTP-AIB545	Veszpremvarsany - Szennyviztisztito Telep	47,4404 17,8203
3 AHX554	Vésztő - Szennyvízelvezetési Agglomeráció	2225 aktív	HU-91271CQ-2016 HU-WWTP-AIB546	Veszto - Szennyviztisztito Telep	46,9314 21,2397
4 AHX555	Villány - Szennyvízelvezetési Agglomeráció	2225 aktív	HU-91271CQ-2016 HU-WWTP-AIB547	Villany - Szennyviztisztito Telep	45,872 18,4652
5 AHX557	Visonta - Szennyvízelvezetési Agglomeráció	2225 aktiv	HU-91271CQ-2016 HU-WWTP-AIB549	Visonta - Szennyviztisztíto Telep	47,7711 20,0387
6 AHX562	Záhony - Szennyvízelvezetési Agglomeráció	2225 aktív	HU-91271CQ-2016 HU-WWTP-AIC150	Zahony - Szennyviztisztito Telep	48,3978 22,1538
7 AHX564	Zalaapáti - Szennyvízelvezetési Agglomeráció	2225 aktív	HU-91271CQ-2016 HU-WWTP-AIA251	Zalaapati - Szennyviztisztito Telep	46,6963 17,1134
8 AHX565	Zalacsány - Szennyvízelvezetési Agglomeráció	2225 aktiv	HU-91271CQ-2016 HU-WWTP-AIB557	Zalacsany - Szennyviztisztito Telep	46,8132 17,1073
9 AHY896	Zalaegerszeg - Szennyvízelvezetési Agglomeráció	2225 aktív	HU-91271CQ-2016 HU-WWTP-AIC153	Zalaegerszeg - Szennyviztisztito Telep	46,8532 16,8572
0 AHX568	Zalakaros - Szennyvízelvezetési Agglomeráció	2225 aktív	HU-91271CQ-2016 HU-WWTP-AIB560	Zalakaros - Szennyviztisztito Telep	46,5487 17,139
1 AHY899	Zalakomár - Szennyvízelvezetési Agglomeráció	2225 aktiv	HU-91271CQ-2016 HU-WWTP-AIC155	Zalakomar - Szennyviztisztito Telep	46,5333 17,1748
2 AHX571	Zalalövő - (Irsapuszta, Szűcsmajor nélkül) - Szennyvízelvezetési Agglomeráció	2225 aktív	HU-91271CQ-2016 HU-WWTP-AIA258	Zalalovo - (Irsapuszta, Szucsmajor nelkul) - Szennyviztisztito Telep	46,8537 16,5681
3 AHX573	Zalaszentgrót - Szennyvízelvezetési Agglomeráció	2225 aktív	HU-91271CQ-2016 HU-WWTP-AIB565	Zalaszentgrot - Szennyviztisztito Telep	46,9356 17,0784
4 AHX579	Zámoly - Szennyvízelvezetési Agglomeráció	2225 aktiv	HU-91271CQ-2016 HU-WWTP-AIB571	Zamoly - Szennyviztisztito Telep	47,3249 18,4112
5 AHX580	Zebegény - Szennyvízelvezetési Agglomeráció	2225 aktív	HU-91271CQ-2016 HU-WWTP-AIA267	Zebegeny - Szennyviztisztito Telep	47,8009 18,9118
6 AHY912	Zirc - Szennyvízelvezetési Agglomeráció	2225 aktív	HU-91271CQ-2016 HU-WWTP-AIB574	Zirc - Szennyviztisztito Telep	47,2765 17,8696
7 ALC548	Zomba-Szennyvízelyezetési Azelomeráció	2225 aktiv	HU-91271CO-2016 HU-WWTP-ALC549	Zomba-Szennyviztisztito telen	46 4092 18 5678

Expected Results

- Recommendation for:
 - Data type, database structure, new types of data is needed(kw/h/m3, PE)
 - Site evaluation methods
 - Standardization of WWTPs' energy audit
 - Legislation and regulation of WWTPs'
 - Cheaper technology, lower maintenance cost
 - Improved water quality
- Dissemination of results

Potential directions of further R+D+I

- ISO 14046:2014 specifies principles, requirements and guidelines related to water footprint assessment of products, processes and organizations based on life cycle assessment (LCA) and reporting a water footprint assessment as a stand-alone assessment, or as part of a more comprehensive environmental assessment.
- Introduction of the standard WWTP energy audit method in Danube basin to improve transparency

THANK YOU FOR ATTENTION

