Experiences and challenges related to Art. 4 (7) WFD implementation

in Austria

Dr. Veronika Koller-Kreimel

I/3 – National and International Water Management

Art. 4 (7) transposition into national law

- Revision of the Austrian Water Act (WRG) in 2003
 - direct transposition of Art. 4.(7) textinto § 104 a WRG

How many projects underwent an Art. 4 (7) assessment and got an exemption?

- For <u>any</u> new project it has to be clarified in the permitting process, whether a deterioration is expected or not (see Ordinances on chemical /ecological status)
- Early pre-discussions with river basin management planning units at provincial level to avoid potential deterioration e.g. by redesigning
 - → Many project were not delivered to the authorization body as planners have realised at an early stage that the chance to get a permit is rather low.
- For 10 projects an exemption acc. to Art. 4.(7) was applied up to 2015
 - 7 hydropower projects
 - 2 projects for flood protection and
 - 1 infrastructure project

Who is the authorisation body in Austria?

- Austrian Water Act is a Federal State Law (responsibility in relevant Ministry)
- Authorities on local (district) or regional (provincial) level act on behalf of the Minister

- Any project which might negatively impact water bodies needs a permit.
 Based on the type / size of project
 - District authorities or regional authorities
 - Ministry for sustainability and Tourism (border rivers, large hydropower)
- Important, that law is applied uniform

- What is a status deterioration?
 (New: Weser ruling, Art.4.7. Guidance)
- How can we forecast deterioration with high confidence?
- How to avoid detrioration
- Which uses /pressures are most likely to deteriorate status?
- Which tools/criteria/thresholds can help to provide arguments in the Art. 4.7. assessment
 - Overriding public interest /weighing benefits
 - Better environmental option
- How to avoid administrative burdens/ delays in permitting process?

- What is a status deterioration?
 (New: Weser ruling, Art.4.7. Guidance)
- How can we forecast deterioration with high confidence?
- How to avoid detrioration
- Which uses /pressures are most likely to deteriorate status?
- Which tools/criteria/thresholds can help to provide arguments in the Art. 4.7. assessment
 - Overriding public interest /weighing benefits
 - Better environmental option
- How to avoid administrative burdens/ delays in permitting process?

To avoid administrative burdens/ delays in permitting process?

- Common understanding ensuring nationwide uniform impementation
- Tools
- Guidances
- Administrative directions to authorisation bodies
- Legal provisions

- What is a status deterioration?
 (New: Weser ruling, Art.4.7. Guidance)
- How can we forecast deterioration with high confidence?
- How to avoid detrioration
- Which uses /pressures are most likely to deteriorate status?
- Which tools/criteria/thresholds can help to provide arguments in the Art. 4.7. assessment
 - Overriding public interest /weighing benefits
 - Better environmental option
- How to avoid administrative burdens/ delays in permitting process?

Forecasting with high confidence

<u>Prerequisites:</u> clear understanding of pressure-impact relationships

- Detailed knowledge on the location and intensity of pressures
- Evaluation of monitoring data to prove pressure biological response-relationship
- Development of pressure specific biological metrics (organic pollution, nutrients, hydromorphologigal alterations)
- Clear knowledge on condition and status of all WFD quality elements at the water body(ies) which might be affected by the new project

Evaluation of monitoring results

Österreich gesamt

Migration barriers 33.000

Hydropeaking 1,6%

Impoundments 4%

Missing E-flow 10%

+++

++

+

+

Macro

phytes

++

++

++

++

Benthic

Invertebr.

++

++

+++

++

++

+++

++

Fish

++

+++

++

++

+++

++

+++

+++

++

+++

Ric	nlogical sensitivit
	Sustainability and Tourism

Biological	sensitivity
(Ordinance on a	uality objectives –F

Hydromorphological changes

Oxygen regime/ Organic pollution

Morphological alterations (m.a.)

m.a. only river bed/soil fixation

Water abstraction/ residual flow

Flow fluctuations (hydropeaking)

s –Ecology) benthos

Changes in water quality

Nutrients/ eutrophication

Temperature

Acidification

Impoundment

Migration barriers

Salinity

+ ++

+++

What alteration will deterioriate status of BQEs?

Forecasting with high confidence

First estimate:

Using thresholds from risk assessment for each of the supporting QE

- exceeding the thresholds set for no risk/risk means that due to the intensity of the pressure (alteration) at least one BQE will not achieve values set for GES
- → If a new project would entail that at least one of these threshold values is not met than a deterioration is very likely to be expected
- ... Furthermore because deterioration does not only mean a class deterioration but also the <u>prevention of achieving the objective</u> (GES, GEP)

To be on the safe side ...

Forecasting with high confidence

"Ordinance on ecological quality objectives – Ecology", 2010:

 Definition of high status for <u>all</u> quality elements (biology, hymo, physico-chemical) – typespecific threshold values

- Definition of guide values for each of the supporting elements
 ensuring good ecological status for all biological quality elements
- → If a new project would entail that at least one of these threshold values will not be met than a deterioration is very likely to be expected

Example: guide values for flow

base flow:

must be available all the time to ensure typespecific habitats and connectivity (quantity, velocity, depth)

 $NQ_{Residual flow} \ge NQ_{t natural flow}$

- in case NQ $_{t \text{ nat.}} < 1/3 \text{ MJNQ}_{t \text{ nat.}}$: NQ $_{t \text{ Resid.}} > 1/3 \text{ MJNQ}_{t \text{ nat.}}$
- in case MQ < 1 m 3 /s and NQ t nat < 1/2 MJNQ t nat.: NQ t Rest. > 1/2 MJNQ t nat

dynamic rate

reflecting the natural dynamics over year to ensure specific functions

- natural bed-sediment relocation, typespecific substrate,
- sufficient stream velocity in times of spawning migrations
- diverse habitat demands of individual age classes of key organisms
- typespecific oxygen and thermal conditions

For the area of Fish region For the thalweg the rapid Ø Minimum Minimum water depth T_{LR} [m] 3 depth T_{min} [m] Epirhithral 0.1 0.15 (> 10% slope) Epirhithral 0.15 0.20 (3-10% slope) Epirhithral 0.20 0.25 (≤3% slope) Metarhithral 0.20 0.30 0.20 (0.30 2 0.30 (0.40 2) Hyporhithral 0.40 Epipotamal

Minimum flow velocities:

For the area of the rapid: v_{min} (m/s) ⁵	≥0.3
Principal current in the migration corridor: v _{min} (m/s) ⁶	≥0.3

. mostly 20% of natural daily discharge

- What is a status deterioration?
 (New: Weser ruling, Art.4.7. Guidance)
- How can we forecast deterioration with high confidence?
- How to avoid detrioration
- Which uses /pressures are most likely to deteriorate status?
- Which tools/criteria/thresholds can help to provide arguments in the Art. 4.7. assessment
 - Overriding public interest /weighing benefits
 - Better environmental option
- How to avoid administrative burdens/ delays in permitting process?

How to avoid deterioration?

- Every new project has to be designed
 - Complying with the State of the of Art § Technology
 - technical standards of waste water treatment
 - ensuring connectivity
 - 0 ...
 - providing flows which ensure good ecological status/potentia
- Clear message: "designe not to deteriorate"
 - Early discussion on project planned with provincial planning authority
 - Supporting tool: "catalogue of mitigation measures"

Mitigation measures to minimise negative impacts on aquatic ecology

Tool:

Catalogue of Measures

- Hydromorphological alterations
- Impacts from urban waste water
- Impacts from agriculture

- What is a status deterioration?
 (New: Weser ruling, Art.4.7. Guidance)
- How can we forecast deterioration with high confidence?
- How to avoid detrioration
- Which uses /pressures are most likely to deteriorate status? Need for specific guidances /tool?
- Which tools/criteria/thresholds can help to provide arguments in the Art. 4.7. assessment
 - Overriding public interest /weighing benefits
 - Better environmental option
- How to avoid administrative burdens/ delays in permitting process?

River Basin Management Plan chpt. 5.6

New projects which might lead to deterioration

- Hydropower plants
 meeting EU goals to increase renewables!
- Flood defense
- Infrastructure (in narrow valleys)

If deterioration can not be avoided by migitigation measures

Art 4.7 assessment

- Overriding public interst/
 Weighing benefits/public interests
- Better environmental option?

- What is a status deterioration? (New: Weser ruling)
- How can we forecast deterioration with high confidence?
- How to avoid detrioration
- Which uses /pressures are most likely to deteriorate status?
- Which tools/criteria/thresholds can help to provide arguments in the Art. 4.7. assessment
 - Overriding public interest /weighing benefits
 - Better environmental option
- How to avoid administrative burdens/ delays in permitting process?

Supporting tool for permitting authorities

Tools to support achievement of **conflicting goals** and **balancing conflicting interests**

Decision support tool for weighing public interest

Austrian Water Catalogue: Protecting Rivers - Using Rivers

Criteria for the assessment of a sustainable hydropower development (Jan 2012)

Also to be used

- as basis for assessment on better environmental options
- to avoid that planners waste money for very problematic projects
- to avoid administrative burdens/ delays in permitting process

...further details- see in next presentation on hydropower

veronika.koller-kreimel@bmnt.gv.at