
Danube Hazard m³c

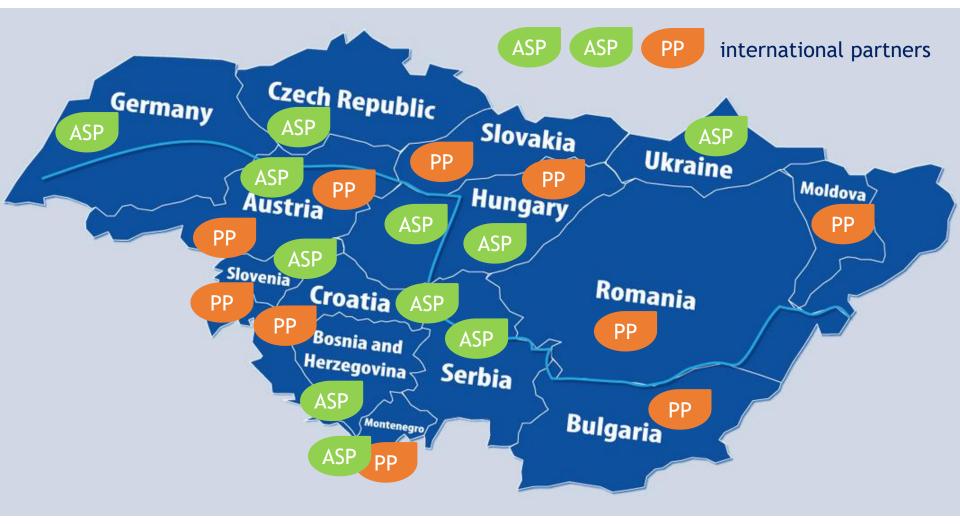
Tackling hazardous substances pollution in the Danube River Basin by Measuring, Modellingbased Management and Capacity building

> Duration: 1.7.2020 – 31.12.2022 Lead partner: TU - Wien

Adrienne Clement Budapest University of Technology and Economics (BME)

Project co-funded by European Union funds (ERDF, IPA, ENI) and National Funds of the participating countries

improve baseline knowledge on the status quo of HS water pollution and on the relevance of different emission pathways


elaborate recommendations for the national and transnational river basin management plans

enhance skills and competence regarding inventorying, modelling and management of HS pollution in the DRB

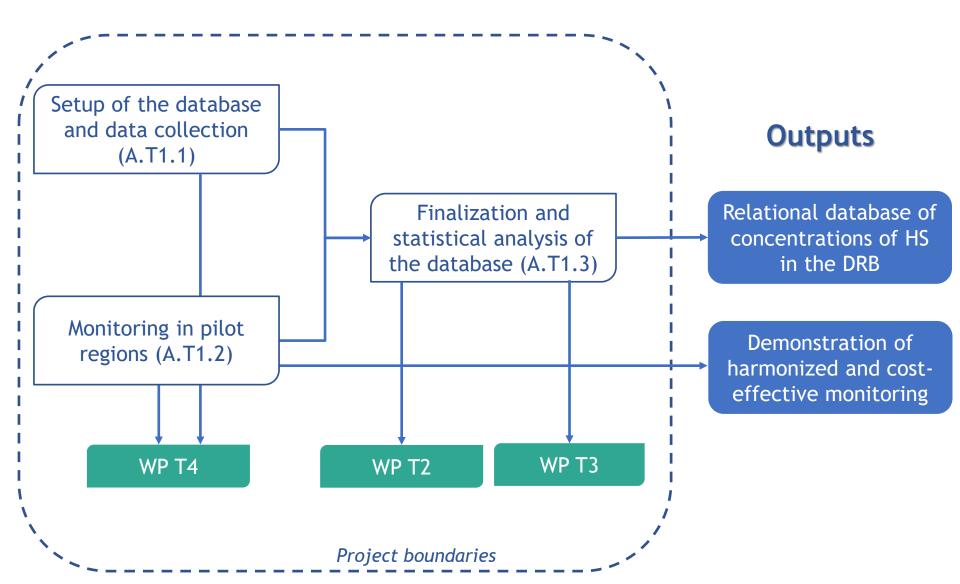
Partners

Project structure

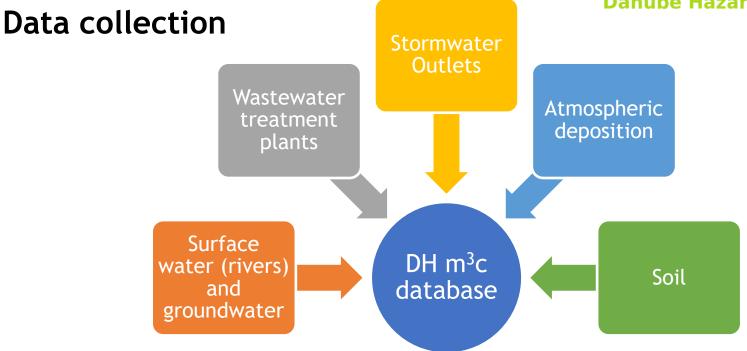
Management

WP T1 Inventory of hazardous substances

WP T2 Scenarios modelling and assessment in pilot regions

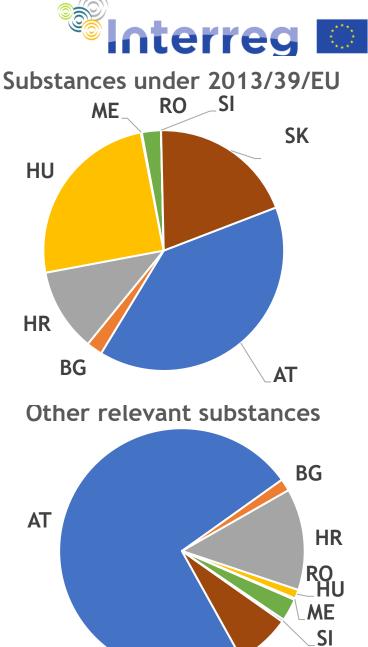

WP T3 Transnational HS pollution assessment and recommendations

WP T4 Capacity building


Inventory of hazardous substances

Substances

- Priority Substances + Priority Hazardous Substances + Other Substances under 2008/105/EC and 2013/39/EC
- Danube River Basin Specific Pollutants (also nominated RBSPs)
- Watchlist parameters
- DH m³c selected project parameters
- Some support parameters (e.g. total suspended solids)

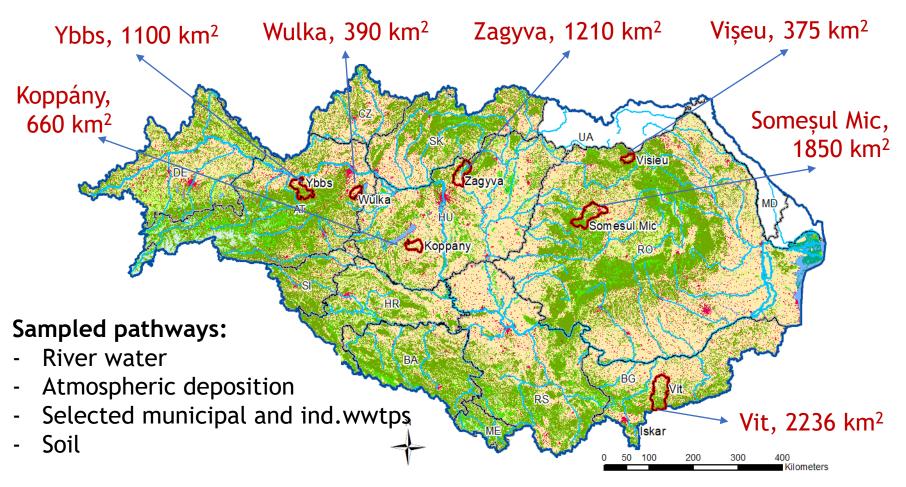


Database of HS

		Atm.		Waste	Storm
Country	River	Dep.	Soil	water	water
Austria	Х	Х		Х	Х
Bulgaria	Х		Х		
Croatia	Х	Х		Х	
Hungary	Х	Х	Х	Х	Х
Moldova					
Montenegro	Х		Х		
Romania	Х			Х*	
Slovenia	Х			Х	
Slovakia	Х*			Х	
Germany**					
Czech Rep.					
Bosnia					
Serbia**	Х				
Ukraine					
Total number of data	2 232 422	7 564	16 750	25 930	8 286

*Time aggregated data

** Data are available but the DRS format were not applied


SK

Monitoring

Measurement campaigns are carried out over one year in 7 pilot regions, which were selected to cover differences and major aspects of the DRB.

WP T1

Preselected "indicator" substances (representative for different sources)

Agriculture

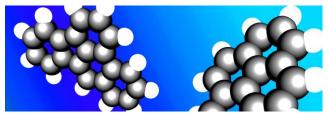
- Tebuconazol (fungicide)
- Metolachlor, Metolachlor -ESA, Metolachlor -OA (herbicide)
 Industrial chemicals
 - PFOS, PFOA
 - Octylphenol, Bisphenol-A, Nonylphenol

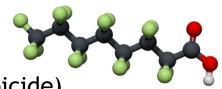
Pharmaceuticals

- Diclofenac
- Carbamazepine

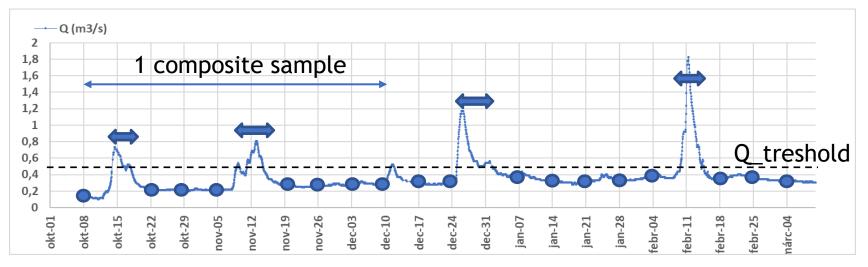
Substances of both natural and anthropogenic origin

- Toxic metals (As, Cd, Cu, Cr, Pb, Hg, Ni, Zn)
- PAH16


Chemical analysis

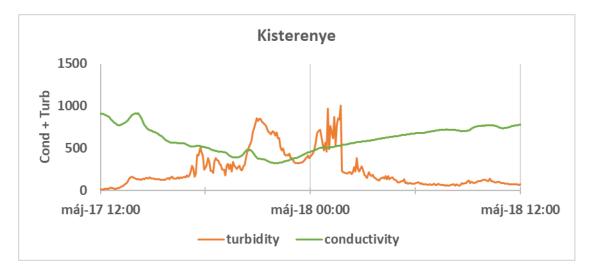

- Each sample are measured in the same laboratory
- Labs of NARW, JSI, UBA and subcontracted lab Wessling

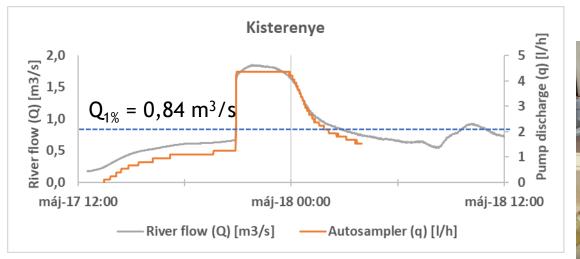
Development of the sampling protocol (SOP)



Sampling approach for river monitoring

- Low and mindflow conditions:
 weekly spot sampling, 8 samples (2 months) = 1 composite
- High flow events: flow proportional sampling with autosamplers

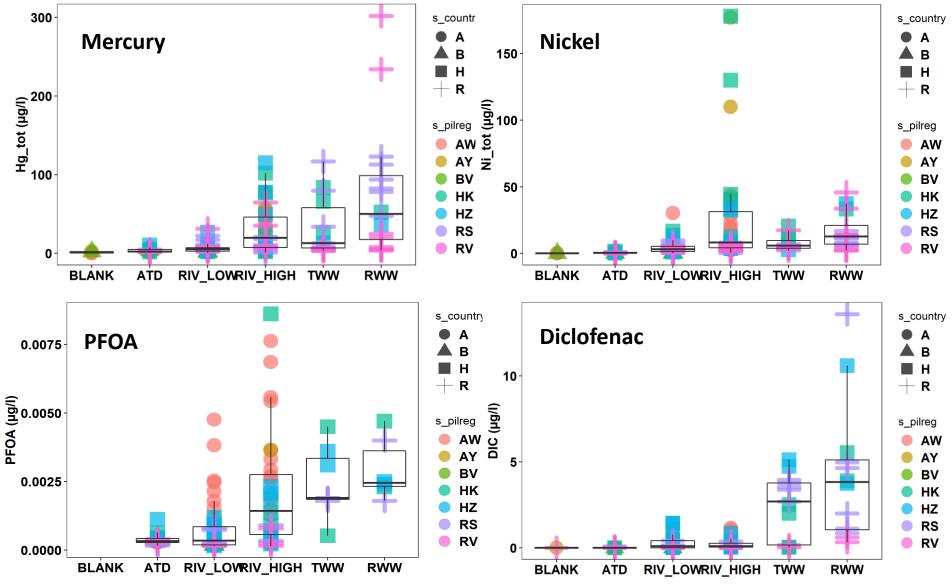

Sampling is supported by **continuous online measurements** of indicator parameters (turbidity and conductivity)



WP T1

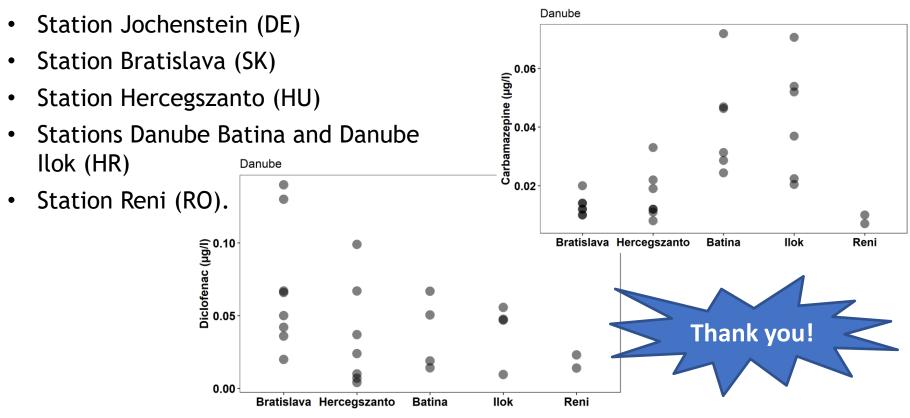
High-flow sampling (Upper Zagyva pilot region, Hungary)

Sampled total volume: 21,9 l

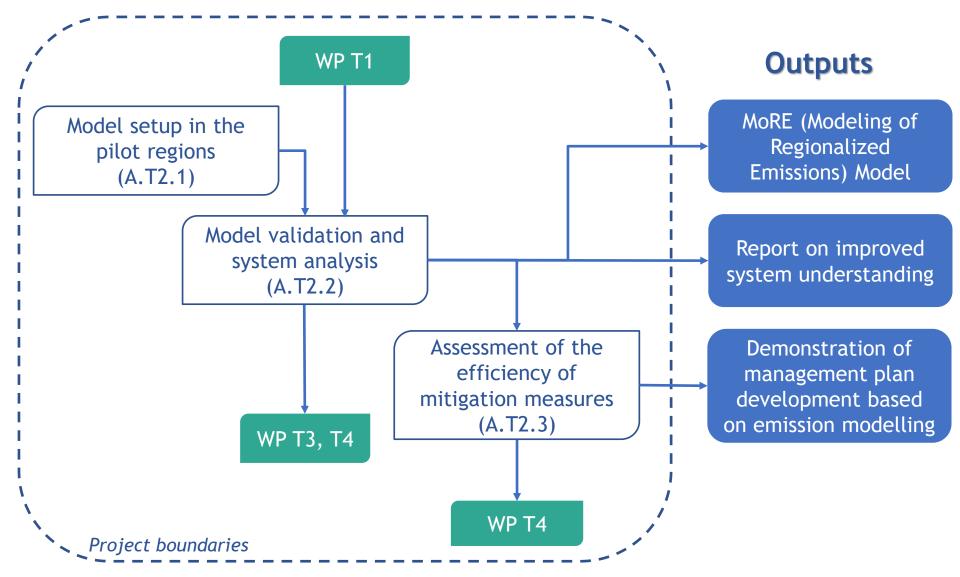


WP T1

Danube Transnational Programme Danube Hazard m³c



Additional measurements within TNMN


Regular measurements were extended: additional analysis at 6 monitoring stations are performed by the countries, but Wessling performs some extra measurements (covered by DH m³c budget):

Scenarios modelling and assessment in pilot regions Da

Data collection – Data availability

Input data type	Actual input data code	Name	description	unit	Wulka	Ybbs	Koppany	Zaqy va	Vit	Viseu	Somesul Mic
Analytical Unit	BI A	Area of analytical unit	Area of analytical units	km²	Available			Available		Available	Available
Topography	BI ELEVA	Digital Elevation model	mean hights of subcatchments	m	Available	Available		Available	Available	Available	Available
Landuse	BIAAL slope 0-1	arable land	(in 5 slope classes: 0-1; 1-2; 2-4; 4-8; >8 % if possible]	km²	Available	Available		Available	Available	Available	Available
Landuse	BLA PST	pastures	(km ²	Available			Available		Available	Available
Landuse	BIAWSmr; BIAWS trib	water surface	main river; tributaries; but also lakes; reservoirs	km ²	Available			Available	Available	Available	Available
Landuse	BI A FOR	naturally covered areas	woods: scrubland	km²	Available	Available	Available	Available	Available	Available	Available
Landuse	BIA O	open areas	alpine-mountainous area without vegetation; beaches; dunes	km²	Available	Available	Available	Available	Available	Available	Available
Landuse	BI A OPM	surface mining areas		km²	Corine (1.3.1)	Corine (1.3.1)	Available	Available	Available	Available	Available
Landuse	BI A URB	settlements	total urban areas	km²	Available	Available	Available	Available	Available	Available	Available
Landuse	BI A IMP	impervious urban area	paved areas inside urban areas: settlements; industrial estates; car parks	km²	Available	Available	Available	Available	Available	Available	Available
Landuse	BI A WL	wetlands		km²	Available	Available	Available	Available	Available	Available	Available
Landuse	BI A OR	country roads	paved road area; not included in settlements	km²	Available	Available	Available	Available	Available	Available	Available
Landuse	BI_A_REM	other remaining areas	if not very small, please indicate landuse as comment	km²	Available	Available	Available	Available	Available	Available	Available
Drainages	TD SHR a td agrl	Tile drained areas	from arable land and pastures	km²	Available	Available	Available	Available	Not available	Available	Available
Meteorological Data	AD EVAPO It	Evapotranspiration,	mean annual evapotranspiration	mm	Available	Available	Available	Available	Not available	Available	Available
Meteorological Data	(e.g.) BI_PREC_apr	Precipitation	monthly values	mm	Available	Available	Available	Available	Available	Available	Available
Hydrological data	BI_Q_net	Net run off from	modelling period; annual data on subcatchment level	m³/s	Available	Available	Available	Available	Available	Available	Available
Erosion	ER_agrl_SL_spec_lt_AL	Soil loss	potential soil loss from arable land (optional from 5 slope classes)	t/(ha∙a)	Available	Available	Available	Available	Not available	Available	Available
Erosion	ER agrl SL spect It PST	Soil loss	potential soil loss from pastures	t/(ha∙a)	Available	Available	Available	Available	Not available	Available	Available
Sewer sytem	BI INH	number of inhabitants		inh	Available	Available	Available	Available	Available	Available	Available
Sewer sytem	US_ss_VOL_SST	sedimentation tanks	storage volume of stormwater sedimentation tanks in separate sewer	m³	Not available	Not available	Available	Available	Available	Available	Available
Sewer sytem	US_cso_VOL_SOT	stormwater overflow	storage volume of stormwater overflow tanks in combined sewer systems	m³	Not available	Not available	Available	Available	Available	Available	Available
Sewer sytem	US_cso_VOL_spec_SOT	stormwater overflow	storage volume of stormwater overflow tanks in combined sewer systems	m³/ha	Not available	Not available	Available	Available	Available	Not available	Not available
Sewer sytem	US_L_CS	combined sewers	length of combined sewers	km	Available	Available	Not available	Not available	Available	Available	Available
Sewer sytem	US_L_SS	stormwater sewers	length of stormwater sewers	km	Available	Available	Not available	Not available	Available	Available	Available
Sewer sytem	US_L_WWS	sewage sewers	length of sewage sewers	km	Available	Available	Not available	Not available	Available	Available	Available
Sewer sytem	US_SHR_inh_con_tot	connection rate	percentage of inhabitants that are connected to sewer systems	%	Available	Available	Available	Available	Available	Available	Available
Sewer sytem	US_SHR_inh_conWWTP_tot	connection rate	percentage of inhabitants that are connected to sewer systems and waste	%	Available	Available	Available	Available	Available	Available	Available
Sewer sytem	US_SHR_inh_nss_tot	connection rate	percentage of inhabitants that are not connected to sewer systems	%	Available	Available	Available	Available	Available	Available	Available
Sewer sytem	US_INHC_H2O		inhabitant specific water consumption	l/(inh∙d)	Available	Available	Available	Available	Available	Available	Available
Sewer sytem	US_nss_SHR_inhl_towwtp_se	pt	percentage of inhabitant load that is transported from septic tanks to waste	%	Available	Available	Available	Available	Not available	Not available	Available
Sewer sytem	US_Q_spec_COM		runoff rate for comercial waste water	l/(ha⋅s)	Not available	Not available	Not available	Not available	Not available	Not available	Not available
Urban wastewater	WWTP_ps_INH_conWWTP	connection rate	number of inhabitants that are connected to sewer systems and waste	inh	Available	Available	Available	Available	Available	Available	Available
Urban wastewater	WWTP_ps_CP	capacity	capacity of the waste water treatment plant (point sources)	PT	Available	Available	Available	Available	Available	Available	Available
Urban wastewater	WWTP_ps_PE	load	nominal load of waste water treatment plant (point sources)	PT	Available	Available	Available	Available	Available	Available	Available
Urban wastewater	WWTP_ps_TS	treatment type	current treatment type of waste water treatment plant (point sources)	-	Available	Available	Available	Available	Available	Available	Available
Urban wastewater	WWTP_ps_Q	discharge	runoff via waste water treatment plant (point sources)	m³/a	Available	Available	Available	Available	Available	Available	Available
Industrial wastewater	ID ps Q	discharge	runoff via industrial direct dischargers	m³/a	Available	Available	Available	Available	Available	Available	Available

WP T2

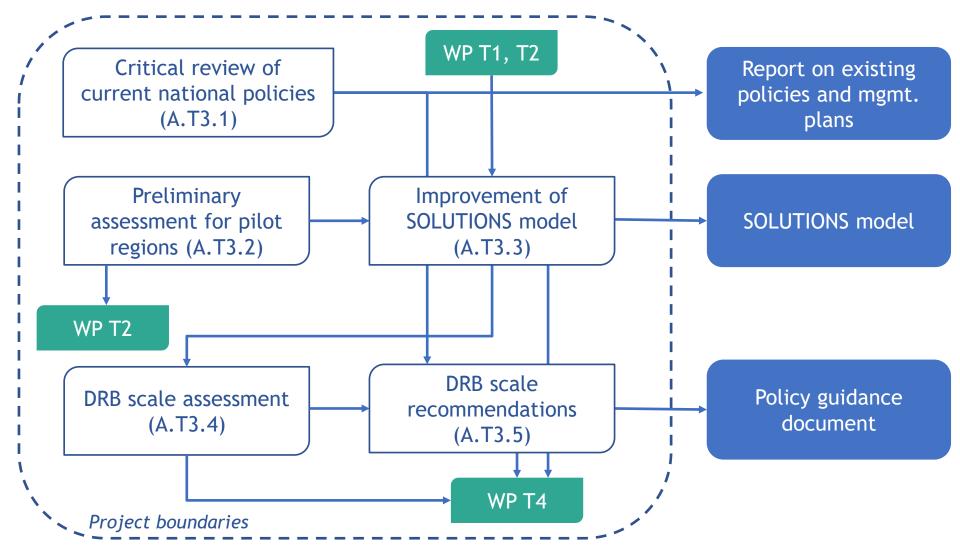
Finalized:

- Technical model setup and translation to English
- Delineation of the 7 pilot regions, subdivided in 34 subcatchments
- Collection of basic input data

Next steps:

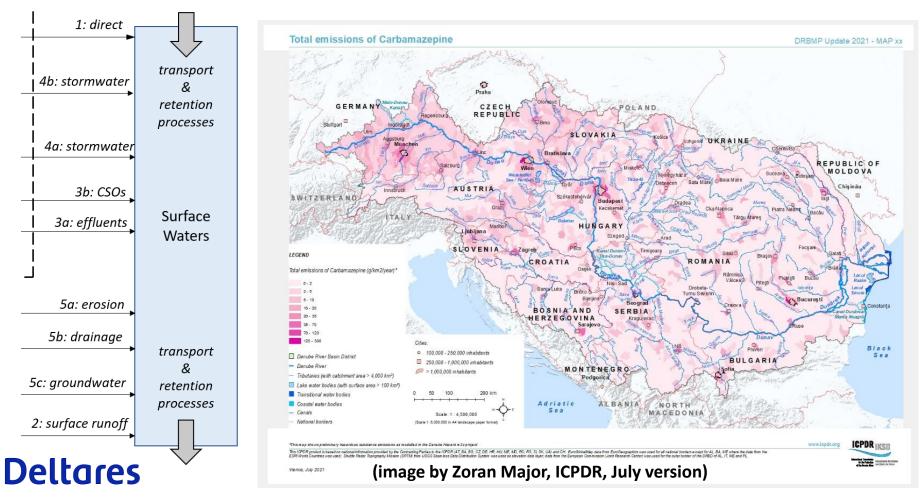
- Adaption of model algorithms
- Preparation of substance-specific input data
- First preliminary version of the model by the end of 2021

Model is ready and status quo is analysed


Catalogue of measures

Model is run for management scenarios

Transnational HS pollution assessment and recommendations

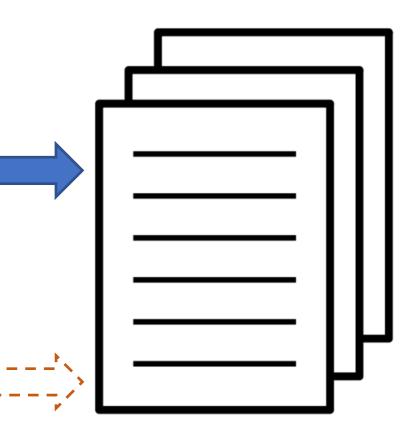


Basin-scale modelling

- Model evaluation using TNMN and JDS observations,
- Preliminary results of basin-wide emissions,
- Input to the 3rd Danube River Basin District Management Plan

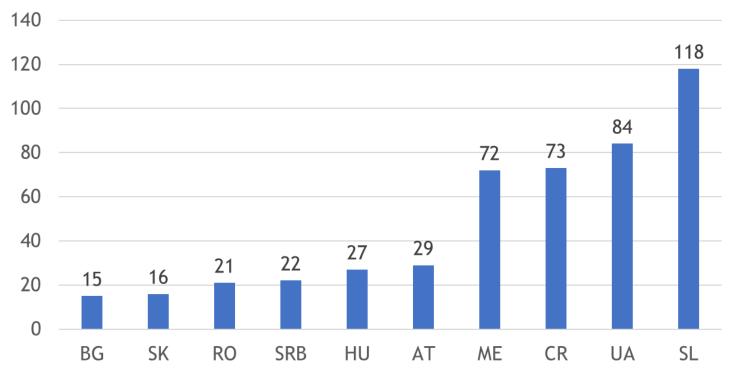
Policy questionnaire

- Tool for investigating the existing national policies on managing HS pollution
- Providing a **common structure** for reporting on the national situations and covering a broad range of aspects including regulatory framework, river basin management, monitoring, pollution sources, measures

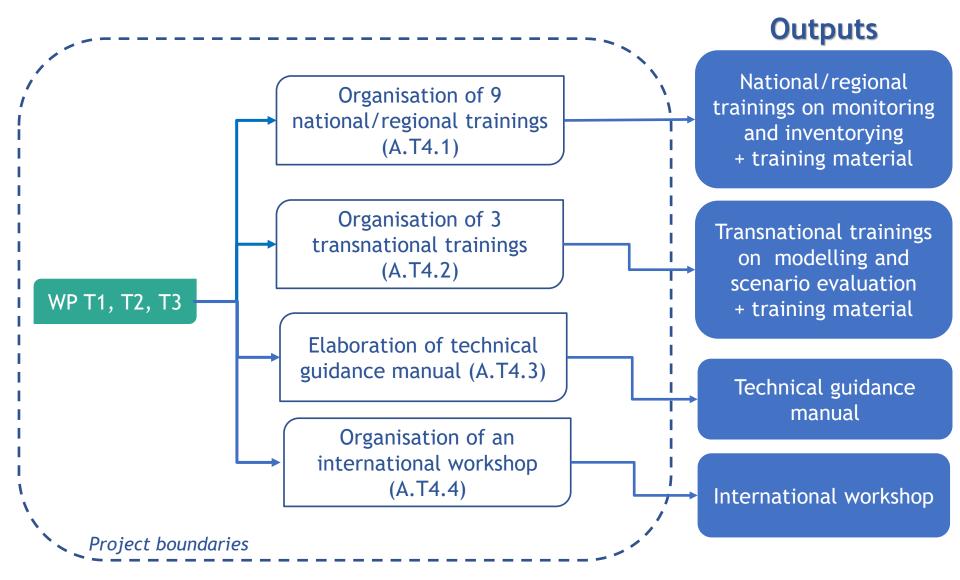

Legislation	River basin	Point source	Diffuse pollution
harmonization	management level	emitters	
General information on the harmonization of the national legislation with the relevant EU Directives, e.g. WFD, Directive 2013/39/EU, Directive 2010/75/EU	Information on the priority and specific substances in water bodies subject to regulation; the respective monitoring of water bodies and the established monitoring database	Information on the management of industrial discharges, i.e. issuing discharge permits, implementation control, database establishment and polluters taxation	General information on the policy framework concerning air emissions and pesticides application

Policy questionnaire

- ✓ Austria (UBA, TU-Vienna)
- ✓ Bulgaria (BWA)
- ✓ Croatia (FCET)
- ✓ Hungary (BME)
- ✓ Montenegro (CETI)
- ✓ Romania (NARW)
- ✓ Slovakia (WRI)
- ✓ Slovenia (JSI)
- ✓ Serbia (MEP) ASP
- ✓ Ukraine (UHISSE) ASP
- ? Moldova (ENI)? Germany (GEA)-ASP



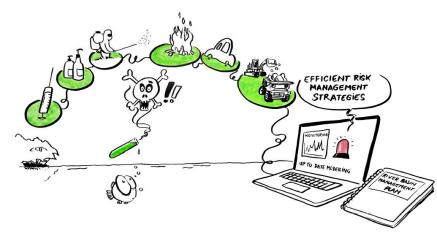
Some preliminary results


- Monitored hazardous substances of industrial emitters discharging into sewer networks
- Only 8 substances (As, Cd, Cr⁶⁺, Cu, Pb, Hg, Ni and Zn) are monitored by all the countries, though the limit values are different

Total number of monitored substances into sewer networks

Thank you for your attention!

Jožef Stefan Institute, Ljubljana, Slovenia



Administrația Națională "APELE ROMÂNE"

© freihand-zeichner e.U., DI Alexander Czernin, www.freihand-zeichner.at

