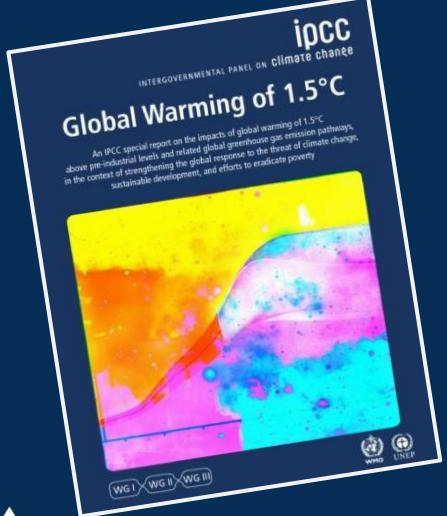
The success story of WaterFolder.com as a response to climate adaptation and stormwater management needs

Jacek Zalewski, 28.11.2023

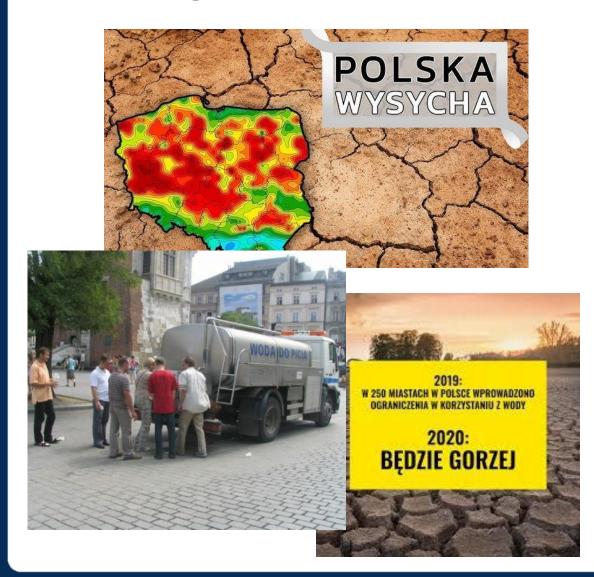
Over 20 years in water management, 17 in an international consultancy Ove Arup & Partners; currently director at RetencjaPL

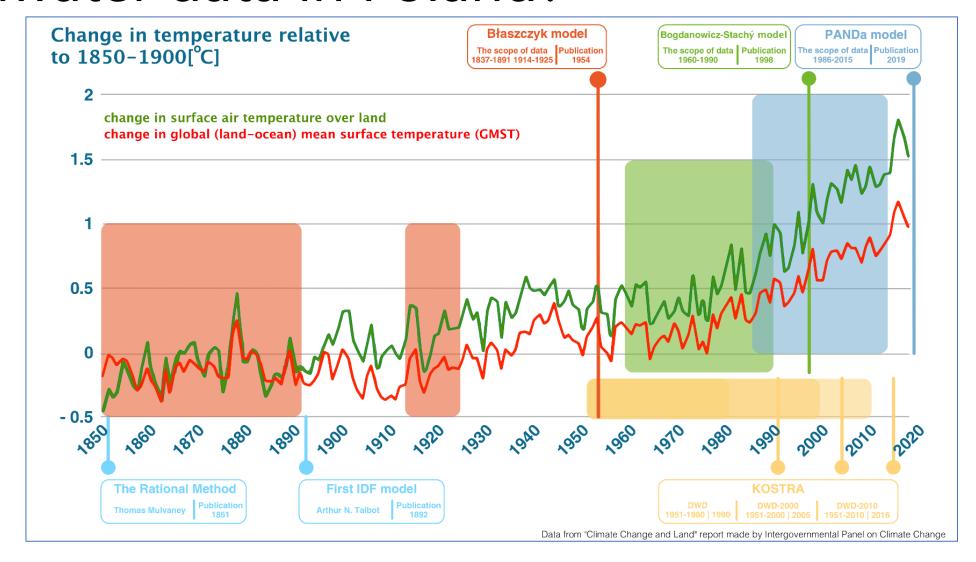
- stormwater management
- rivers
- sustainability
- climate change adaptation in cities
- green & blue infrastructure
- design
- digitalisation

https://www.linkedin.com/in/jacek-zalewski-1a5919127/



Flooding

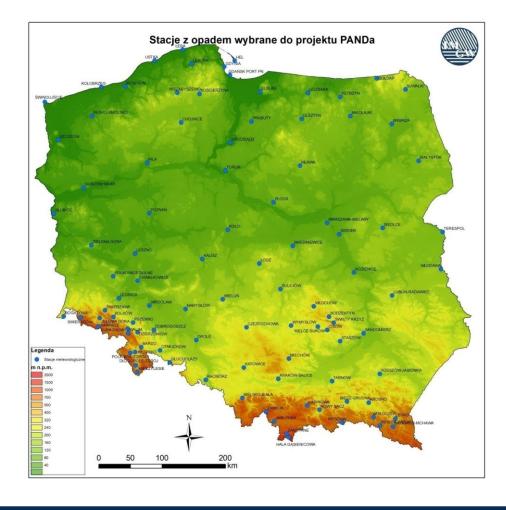



Droughts

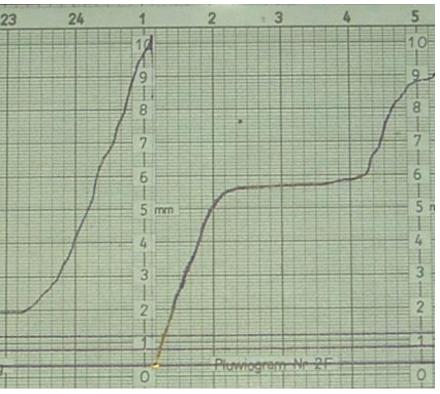
1. Going digital in stormwater management Polish Atlas of Rains Intensities (PANDa/PARIs)

Rainwater data in Poland?

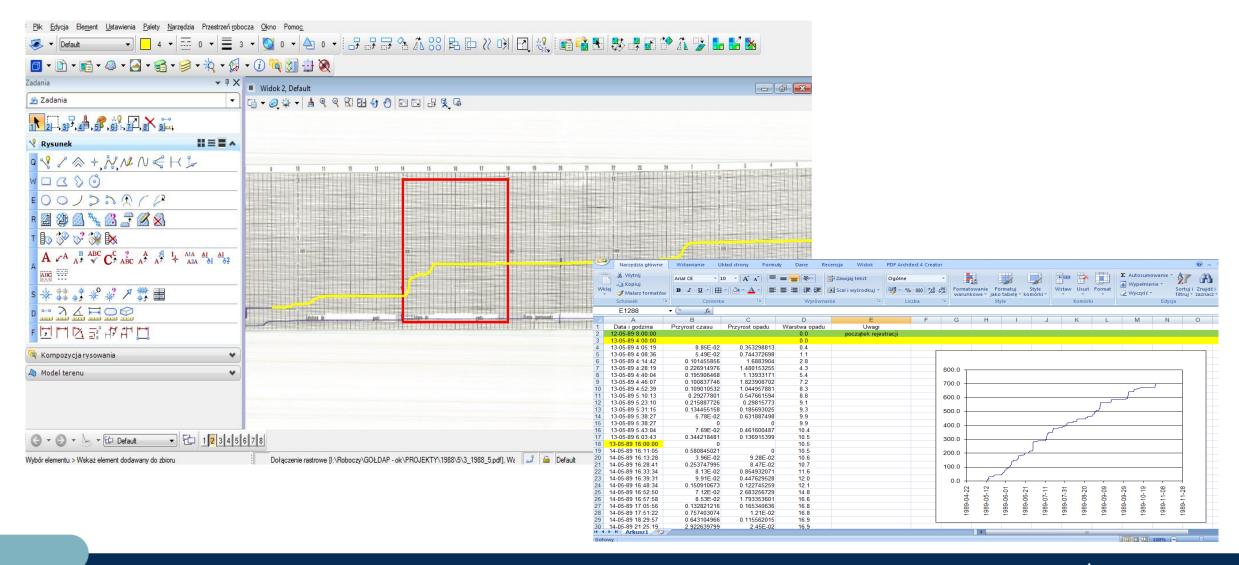
PANDa (PARIs) project



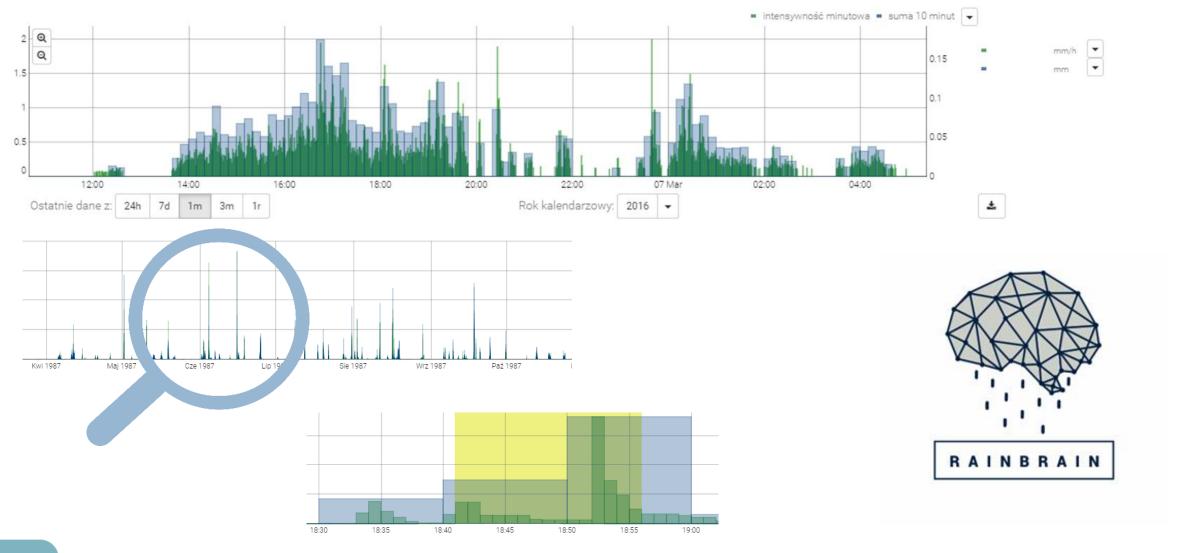
- ✓ 100 gauges
- √ a 30-year record (1986-2015)
- √ high resolution time series (single minutes)



Historic data from the 100 raingauges

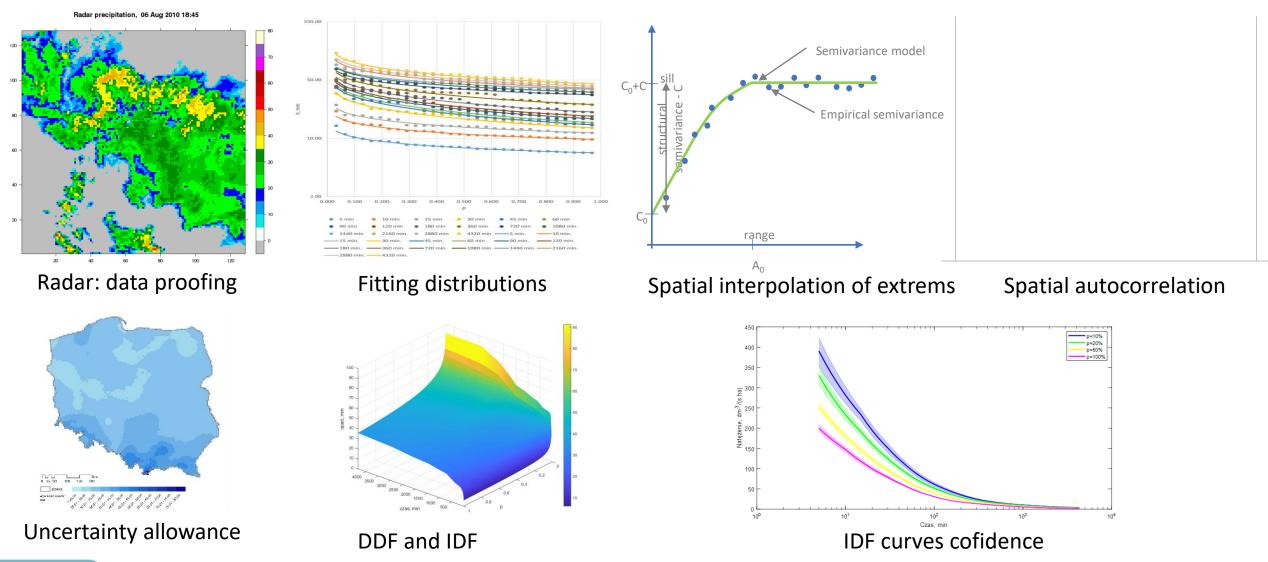


Pluviograph



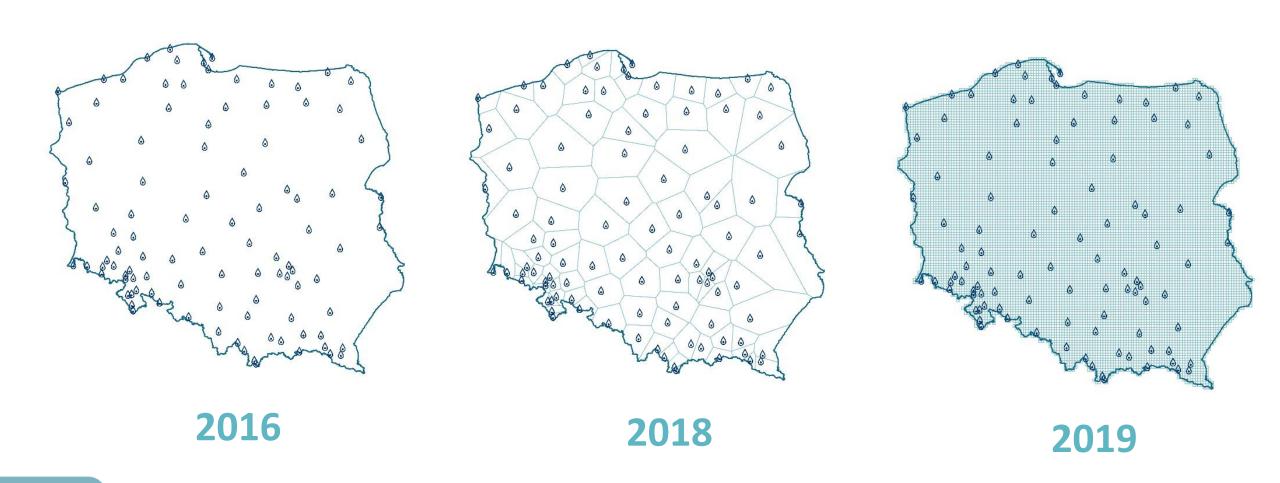
Digitalization of rainfall records

Digital rainfall series processing - RAINBRAIN database


Extremes – maximum depths and rainfall intensities

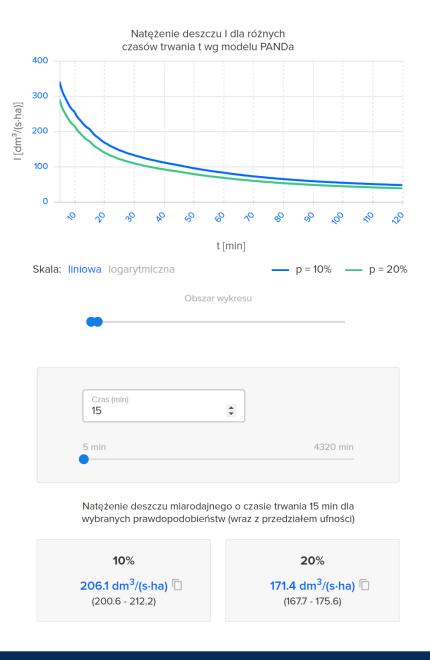
26 czerwca 1988 20:11 UTC		and faimail intensities														
	1138.58667	66_														
			60. maksymalnych średnich natężeń I, I/s/ha dla okresu (w min):									■				
	315.88260	25	15	30	45	60	90	120	180	360	720	1080	1440	2160	2880	4320
	313.54443	22	443.81112	222.42811	148.32376	111.27159	75.43173	57.53217	38.69501	20.23148	10.11574	7.28395	5.99537	5.30864	4.03935	2.92438
			190.59347	143.60547	108.51852	88.33333	65.92593	55.13889	36.85185	19.39367	9.89871	6.59914	5.17704	4.50617	3.98727	2.65818
	297.1166	21	183.67849	131.11111	107.77778	82.22222	60.55556	45.97222	31.66667	16.86027	9.49120	6.58273	4.97685	4.08060	3.12962	2.12787
	296.6666	19-	182.22222	122.77778	98.45736	74.66036	52.69380	42.63778	29.53704	16.25350	9.21211	6.42540	4.94936	3.82781	2.90143	2.04307
	290.00007		170.00000	116.73533	90.50576	69.14689	49.88281	39.16667	29.50611	16.15741	8.19444	5.98765	4.81905	3.69067	2.76800	1.95851
			154.44444	107.31244	77.82758	66.28815	49.29897	38.40005	28.97992	16.15741	8.10185	5.75617	4.36343	3.59568	2.71412	1.90972
7	280.00000	196.66667	4.44444	100.55556	75.41428	58.96970	47.81608	37.66211	28.42593	15.46296	8.07870	5.46296	4.31713	3.49700	2.64749	1.90771
8	267.35527	188.76470	.33533	97.77778	69.62963	58.37370	45.37263	37.44056	26.57407	14.92519	7.73148	5.40123	4.25127	3.42684	2.57245	1.89043
9	266.66667	188.33333	148.15452	90.72777	67.83803	55.83333	43.52467	36.44177	26.52827	14.72391	7.51842	5.33788	4.23611	3.21270	2.40953	1.85059
10	263.00883	184.68713	146.66667	89.44444	67.40741	54.16667	41.11111	35.83144	26.45331	14.58333	7.50000	5.15432	4.16971	3.09115	2.32639	1.84534
11	258.91683	178.90732	146.66667	88.33333	65.74626	53.70603	39.97937	34.58333	26.02508	14.42858	7.48262	4.99433	4.13290	3.04327	2.28296	1.72941
12	249.50907	177.03235	145.68718	86.30810	64.89285	53.44930	39.83198	34.39080	25.80620	13.53161	7.37299	4.94765	4.05093	3.02165	2.26624	1.71296
13	246.66667	175.45258	145.66872	86.18534	61.85185	52.25586	38.91982	33.257 67	25.08207	13.42593	7.29678	4.93870	3.91204	2.96462	2.25113	1.60645
14	240.00000	173.61222	131.77646	84.14216	61.17591	51.76271	38.19681	31.60.182	24.96357	13.06050	7.13445	4.92269	3.89521	2.96126	2.24926	1.60214
15	239.12033	171.66667	131.34774	83.88889	60.37037	51.11111	37.77778	29.19288	23.91094	13.00926	7.05254	4.90973	3.86574	2.90895	2.22095	1.58433
16	231.81207															1.55093
17	230.00000		1.54707													
18	220.66653		<u> </u>	√laximi	um raii	ntall in [.]	tensiti	es (vea	rs 198	6-2015	o) tor ti	me du	rations			1.52963
19	220.41387	Maximum rainfall intensities (years 1986-2015) for time durations:								1.52531						
20	213.89200		10 15	20 45	$= 60^{\circ}$	120	100	360, 72	0.0	0	0 216	1 2000	1220	minu	toc	1.52392
21	210.00000	Ο,	TO, TO	, 30, 43), DU, S	O, IZU	, TOU,	30U, /2	iu, iuc	O, 144	U, ZIO	J, ZOOL	<i>),</i> 4520	milliu	les	1.52197
22	210.00000															1.51572
23	206.66667	197.02112	110.30000	70.00007	00.01019		00.00000	27.17010	19.40007	10.000-0	0.02041	7.02021	0.04077	2.00000	2.00000	1.50076
24	203.33333	148.33333	117.55423	76.19233	55.40645	44.19598	32.77778	26.38889	18.98148	10.41667	6.46402	4.51054	3.62269	2.65432	2.06019	1.47948
25	201.97167	146.04348	117.38598	76.15031	55.37494	43.54666	31.81938	25.97222	18.81123	10.12275	6.43519	4.47679	3.62143	2.57716	2.02546	1.45833
26	201.80233	141.66667	114.44444	71.69184	55.20281	42.50000	30.98238	25.56821	18.24074	10.11863	6.40699	4.47531	3.61111	2.56903	2.01736	1.45361
27	197.63667	141.66667	113.33333	69.21354	55.18519	42.19388	30.74074	25.30796	18.16021	10.04164	6.38889	4.45988	3.56648	2.50043	2.01389	1.44775
28	196.66667	138.90081	112.28709	69.21109	53.51678	41.66667	30.37037	24.68541	18.14815	9.95370	6.37076	4.43460	3.54852	2.46405	1.99074	1.43133

Dates are important for verification...

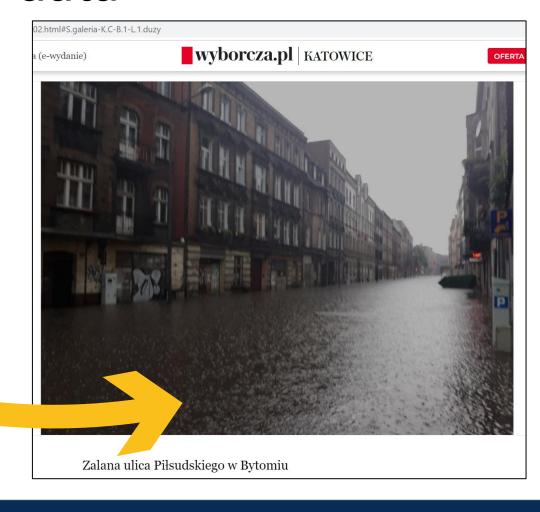


Geostatistical analysis and data proofing

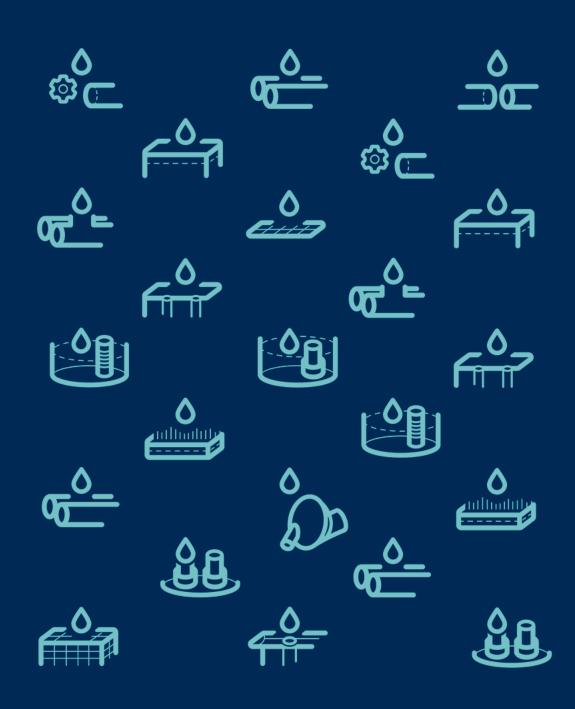



PARIs (PANDa) project milestones

https://portal.atlaspanda.pl/login

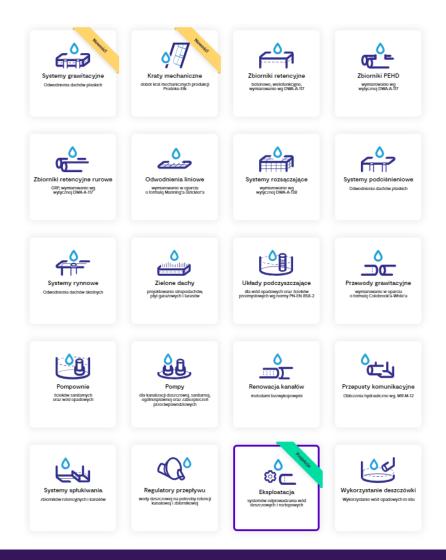


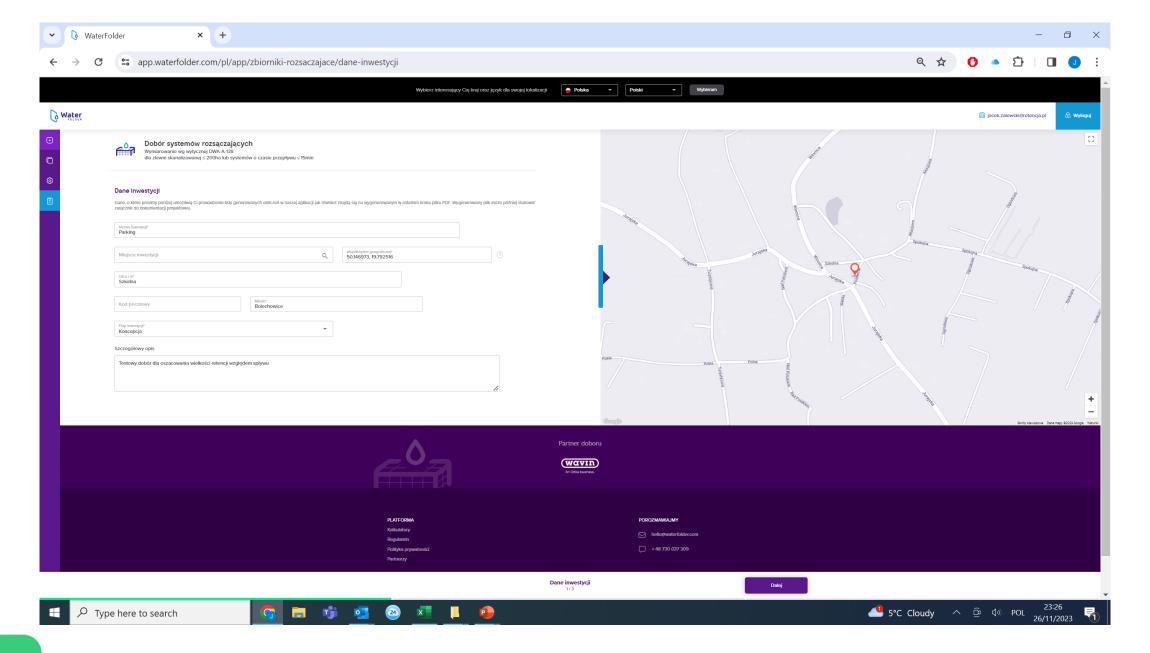
Fluidit Flood Model Results


Hydrodynamic simulations with PARIs data

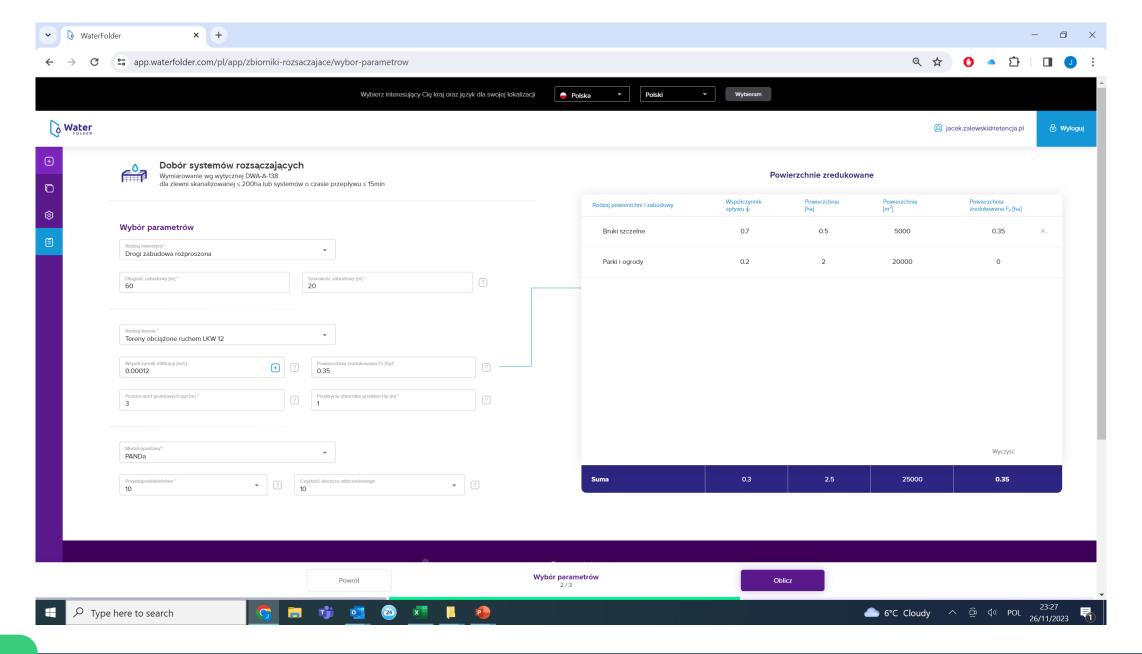
2. WaterFolder.com

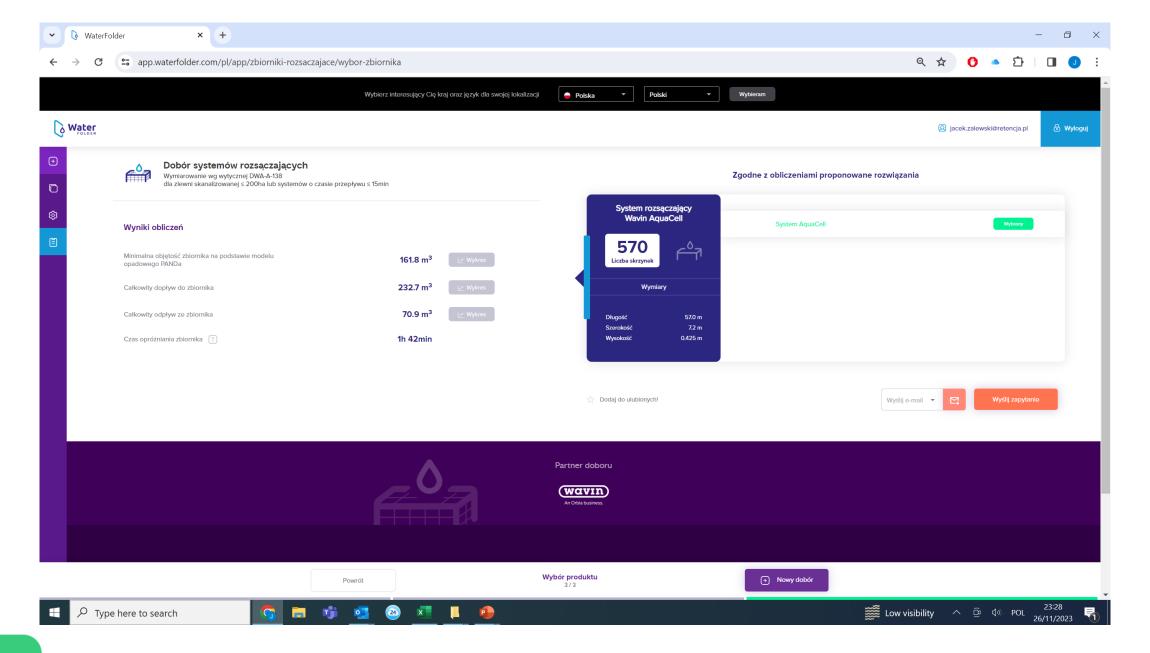
a digital design platform of drainage systems




WaterFolder.com

- 16 tools
- several producers
- proven calculation methods
- PARIs (PANDa) rain intensities





System retencyjno-rozsączający Wavin AquaCell

Dla inwestycji Parking

Data utworzenia dokumentu 26.11.2023

Dane inwestycji

Ulica: Szkolna Miasto: Bolechowice Kod pocztowy: -

Współrzędne geograficzne: 50.146972.19.792515

Testowy dobór dla oszacowania wielkości retencji względem spływu

Parametry doboru

Rodzaj inwestycji: zabudowa rozproszona Długość zabudowy: 60 m Szerokość zabudowy: 20m

Rodzaj terenu: LKW 12 Rodzaj gruntu: plaski średnioziarniste Współczynnik infiltracji: 0.00012 m/s

Poziom wód gruntowych ppt: Przykrycie zbiornika gruntem:

Model opadowy: PANDa Prawdopodobieństwo p: 109 Częstość deszczu obliczenio

Powierzchnia zredukowana

Rodzaj powierzchni / zabudowy A	Współczynnik spływu ψ	Powierzchnia A [ha]	Powierzch A [m²]
Bruki szczelne	0.7	0.5	5000
Parki i ogrody	0.2	2	20000
Suma	0.3	2.5	25000

Zaprojektowano zbiornik rozsączający w zabudowie **jednowarstwowej** o wymiarach zapropektowano zuorina. Iuzagczający w zabutowie **jeunowarstwowej** o wymiarach ż pojemności wodnej minimum **164.2m²** ułożony ze skrzynek o wymiarach 1,2 x 0,6 x 0,425 zbiornika znajdują się płyty denne. Odpowiednie wyprofilowanie płyty dennej ułatwia prowod

Water

Dobrane rozwiązanie

zonomina znajuują się pryty demne, очрожнение wypromowanie pryty ченнеј игото promot końcówki urządzenia czyszczącego, zapobiegając jego zaklinowaniu. Kolejne warstwy skrzyni

Skrzynka posiada 8 kolumn. Każda kolumna to grupa 3 podpór. Konstrukcja zbiornika jes эльгулма рознача с клинтів. кахиа колинтів то grupa з рочрог, конзытиксја zaiornika jes stosowane są tylko na zewnątrz zbiornika, tak że każda warstwa zbiornika jest powierzci Wewnątrz zbiornika powstają kanały krzyżowe: dwa równoległe o szerokości 200mm i prostopał Wiączenie można wykonać w dowolnym miejscu, bez konieczności zmiany konfiguracji zbiorniki pomocą zblokowanych uchwytów i zatrzasków - nie stosuje się zadnych elementów iączących

Moduł skrzynek AquaCell jest przygotowany do eksploatacji z powierzchni terenu za pomocą модит эксупек, ядиасен језt ргzygulowany uo екърионаці г ротпеталня клеты за ротпед Wavin DN/ID425 lub 315 zabudowanych bezpośrednio na zbiorniku, inspekcja możliwa jest w

mann unruuwsa под за каривоменурн везиранечно на кионники, първекца пислича јези к celu przeprowadza czyszczenia można stosować alternatywnie studzienki zamontowane Cetu przeprowouza czyszczenia możne susowne amemarymie suozenia zamoniwanie użgodnieniu wielkości studzienki z eksploatatorem. Zaleca się, aby studzienka miała średnicę v

эмску пис эмпоно эму к и кессі каптатом; dwóch o szerokości 200 i wysokości 365 mm oraz jednego prostopadłego o szerokości 185 mm

ukryte w konstrukcji skrzynki, aby nie uszkodzić geowłókniny.

Wytrzymałość skrzynek (obciążenie krótkotrwałe) badana zgodnie z normą PN-EN17152:2019-11

■ Na ściskanie w kierunku pionowym - >400 kN/m² Na ściskanie w kierunku poziomym - >110 kN/m²

Pozostałe informacje

Wytrzymałość skrzynek (obciążenie długotrwałe) badana zgodnie z normą PN-EN17152:2019-11

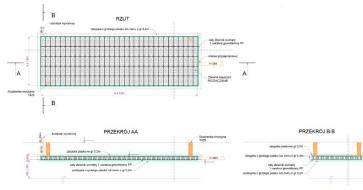
Na ściskanie w kierunku pionowym 95% LCL - ≥145 kN/m² Na ściskanie w kierunku poziomym 95% LCL - ≥28 kN/m²

Konstrukcja zbiornika posiada budowę otwartą, co umożliwia łatwy dostęp do każdego miejsca zbiornika – minimalna cii i czyszczenia powinna wynosić minimum 54%. Pojemność retencyjna (wodna)

n symetrycznie na zbiorniku, poczynając od zewnętrznych ścian

owinien być wyposażony w odpowiednią ilość odpowietrzeń DN110 nych kanalizacyjnym kominkiem wentylacyjnym.

yjnych o wymienionych wyżej wymiarach system posiada możliwość prze technicznym oraz prowadzenia cyklicznych przeglądów instalacji, enia takiej konieczności..


x0,425 m (wysokość skrzynki po włożeniu w dno wynosi 0,4 m). vzględnić dno o wys. 0,025 m.

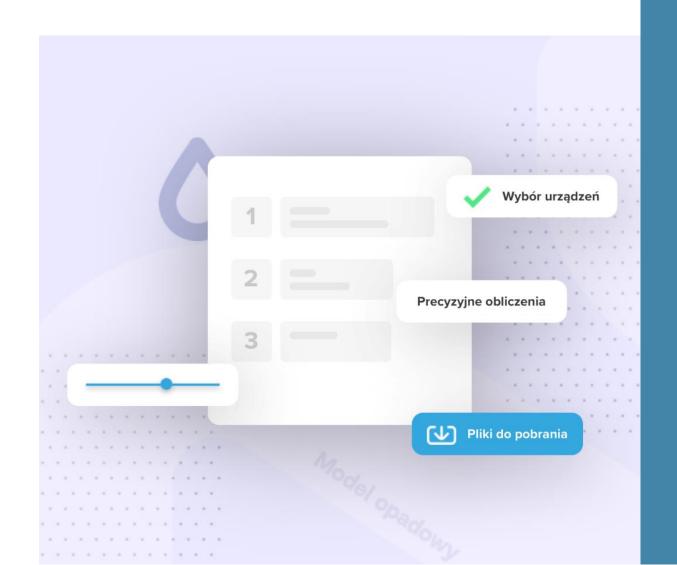
e się inspekcyjnym i możliwym do czyszczenia to grupa 3 podpór

v każdym kierunku BxH 200x365 mm i jednego BxH 185x365 mm (szerokość podana w

Inych: elementy studzienek inspekcyjnych DN/ID425 oraz DN/ID315

Ogólny schemat zabudowy zbiornika retencyjno-rozsączającego Wavin AquaCell w zabudowie jednowarstwowej

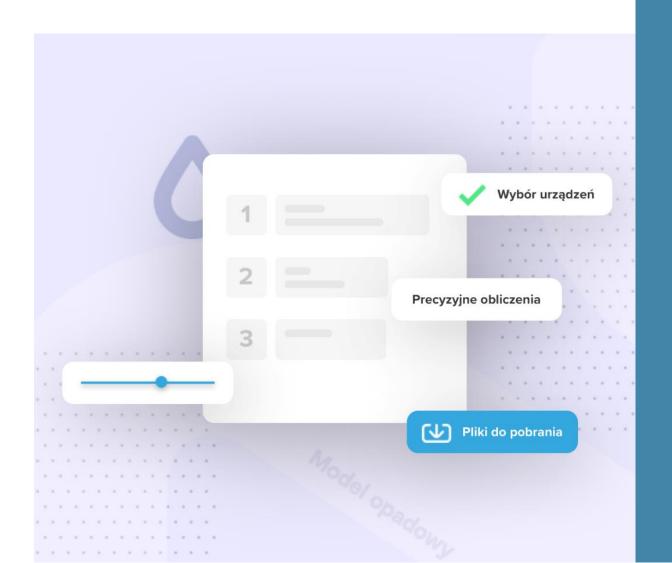
Water


Opis rozwiązania

Skrzynka składa się z trzech kanałów:

Dobór systemów rozsączających www.waterfolder.com

WaterFolder.com data



Number of users

6500

+200
new users per month

Infiltration systems

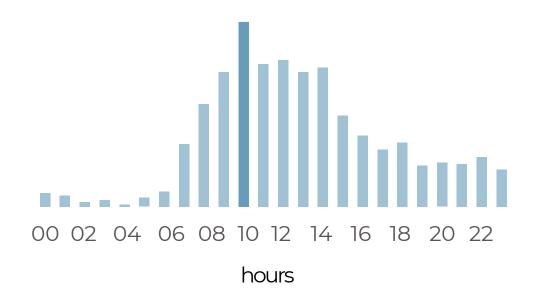


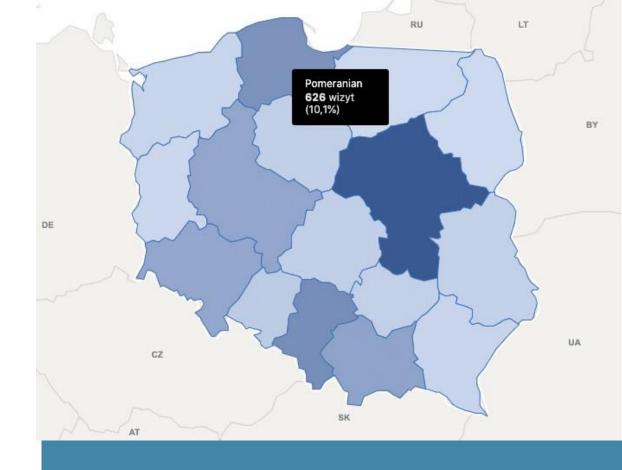
Number of calculations

50200

in 3 years

WaterFolder.com data

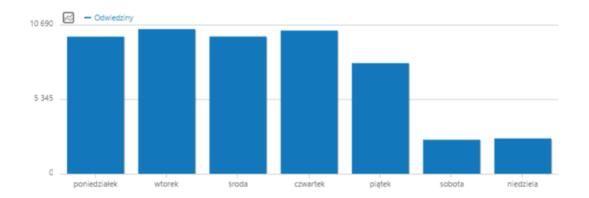

Number of calculators (tools)

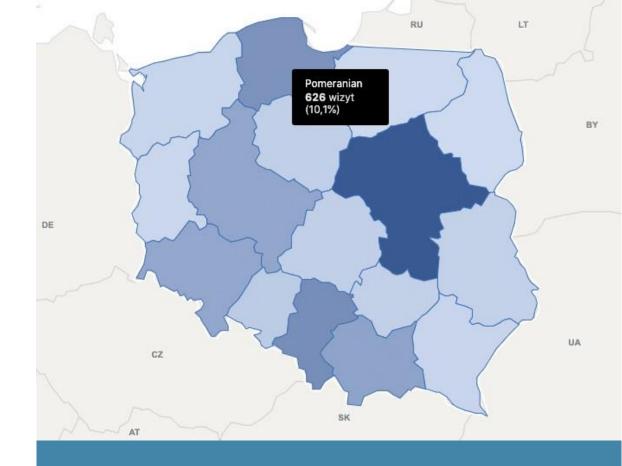

16

+8
to be introduced in 2024

When and where we work?

Most popular calculation time





Region with the highest number of calculations

When and where we work

Visits per day

Voivodeship with the highest number of calculations

Average calculation time

2 min 20 sec

(6)

Select an appropriate tool for making your choice

Calculation based on PAND' a Atlas

70% of all calculations

(3)

Select an appropriate tool for making your choice



the Manning-Strickler formula

WaterFolder Day

A 1 day conference in Gdańsk, Poland, for designers

750 participants

Next step: WaterFolder Connect

Project title:

WaterFolder Connect - an integrated platform for design and modeling of drainage systems

Grant number POIR.01.01.01-00-0119/21
Operational Program of Intelligent Development 2014-2020

