

Adapting to Climate change in relation to WATER

Changes in the qualitative and quantitative parameters of waters in the light of climate change

28/11/2023 Budapest

Danube Region

Co-funded by the European Union

Advantages of the utilisation of sewage sludge in the improvement of the retention capacity of soils

Mátyás Devecseri, Senior Technical Advisor (OVF) István Padra, Environmental Consultant

Vulnerable areas

OUR WATER VISION

Soil types

OVE

climate change (local and global)

Causes of

- Spread of industry-like agriculture
 - Large field sizes (loss of mosaicism),
 - Destruction of natural vegetation,
 - Removal of forest strips (field protection),
 - Water management: canalisation, dewatering,
 - Agricultural chemisation
 - One-sided fertilizer use,
 - Chemical crop protection,
 - Intensive soil disturbance loss of biodiversity,
 - Spread of monocultures e.g: cereal, oil and protein crops,
 - Reduction of livestock (lack of organic matter),
 - Irrigation (on soils w/ poor water balance, w/o organic matter supplementation),
 - Biomass burning (removing organic matter from the ecosystem).
 - Uncovered topsoil for most of the year (erosion, deflation, organic matter exhalation)
- Natural warming

OVE

Causes of climate change (local and global)

Fertilizer

Fertilizer

Organic matter replenishment

Organic matter replenishment

Water issues

- Continuous and accelerating decrease in ground watter level
 - Evaporation, transpiration
 - Irrigation
 - Groundwater flow towards river valleys.
- Long dry periods, increasing drought (ecological flexibility of the landscape is lost)
- Nitrate pollution in groundwater (fertilizers and pesticides)
- Damage by extreme precipitation (erosion, hail).

Stopping soil destruction

Coordinated organic matter and water management to restore the ecological functions of the soil (and landscape)

- Restoring soil fertility improves
 - Nutrient-providing ability
 - Water storage capacity
 - Pollution filtering capacity (via functioning biodiversity building a food network on organic matter)
- Varied and mosaic agro-ecosystems with regenerative approach (forest, pasture, orchard, arable land)
- Continuous soil surface coverage with living vegetation

Urban WW sludge

- High organic matter content: 60-85% (biomass responsible for treatment)
- Macro-, mezo-, és micro elements
- Colloid dimension, high water capacity
- Most nutrients inside cells, no washing out, elongated nutrient source
- With the 90 types of elements found in human nutrition, the ecological system can be restarted

- 4-8% dry m. sludge injected to 40-45 cm deep behind winged hoes, it forms a watertight layer, slowing evaporation and pollution towards groundwater,
- Fixes all properties of sandsoil (phisical, chemical, biological).
- On-site tests prove the lasting improvement of soil fertility.
- The use is subject to authorization.

Injection

OUR WATER VISION

- Spread as fertilizer
- Working into soil immediately
- Needs authorization: 50/2001
 Government Decree (on the rules for the agricultural use and treatment of wastewater and sewage sludge)

Dewatered sludge

Forestry research Results

Species: Acacia

- Control soil: sand
- 1.5 kg sludge mixed in the pot
- 3 kg sludge mixed in the pot

Obsatcles in sludge utilization

Decree 50/2001 allows usage w/ exclusion

- environmental condition e.g NO3 or NH4 content in groundwater
- Sand soil of large particles without colloids
- Prohibited in forestry due to its waste status

Fertilizers and pesticides are allowed in these areas

Source: Eurostat (online data code: env_ww_spd)

- Others
- Incineration
- Landfill
- Compost and other applications
- Agricultural use

Pine planting **DANUBE REGION** on sand in a forest nursery

LET'S NOT WATER SEWAGE SLUDGE! LET'S HEAL OUR SOIL!

- http://enfo.agt.bme.hu/drupal/sites/default/files/genetikus_fotipus_terkep_kicsi.jpg
- https://extensionarchitecture.co.uk/new-builds/soil-types-in-construction/
- https://promotions.hu/orszagos/tech-tudomany/2019/07/25/klimavaltozas-globalis-felmelegedesfelsivatag-magyarorszag
- Kalocsai et al. http://hidrologia.hu/vandorgyules/36/word/0203_kalocsai_renato.pdf
- https://mek.oszk.hu/02100/02185/html/304.html
- Megyes A: https://slideplayer.hu/slide/2108027/
- Csathó és Radimszky, 2007
- https://agraragazat.hu/hir/szantofoldi-injektalok-a-higtragya-talajba-juttatasahoz/
- https://www.youtube.com/watch?app=desktop&v=6rsPH9EjCZA&ab_channel=PetyaAgroTV